1
|
Pei Y, Tobita M, Dirlikov B, Arnold D, Tefertiller C, Gorgey A. Consumer views of functional electrical stimulation and robotic exoskeleton in SCI rehabilitation: A mini review. Artif Organs 2025; 49:729-748. [PMID: 39711332 PMCID: PMC12019081 DOI: 10.1111/aor.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Functional electrical stimulation (FES) and robotic exoskeletons represent emerging technologies with significant potential for restoring critical physical functions such as standing and walking-functions that are most susceptible after spinal cord injury (SCI). However, the further development and successful integration of these technologies into clinical practice and daily life require a deep understanding of consumer perspectives. OBJECTIVE This review synthesizes consumer perspectives from a diverse range of technology stakeholders, including medical service providers, researchers, and persons affected by SCI-those living with SCI and their caregivers. By capturing this diverse range of perspectives, the review aims to describe the real-world implications, challenges, and expectations associated with FES and robotic exoskeleton technologies. METHODS Relevant literature was primarily identified through a search in EBSCO, SCOPUS, and Web of Science. The authors supplemented the search by reviewing reference lists including appropriate articles identified by the authors. The PICO question guiding this process was defined as P (persons with SCI and caregivers, researchers, clinicians, and developers), I (use of FES or robotic exoskeletons), C (technology users compared to non-users), and O (stakeholder perspectives and experiences). Each identified article underwent a thorough appraisal, after which findings were summarized to present consumers' viewpoints on FES and robotic exoskeleton technologies. RESULTS The review focuses on key areas such as perceived benefits, limitations, implementation barriers, and consumer expectations. The benefits identified are multifaceted, extending from physical improvements, such as enhanced mobility and muscle strength, to psychological gains including increased confidence and sense of independence. However, these technologies also face perceived limitations, often related to accessibility, cost, and usability challenges. Beyond technical issues, implementation barriers are related to factors like insurance coverage and the need for specialized training for both users and providers. Consumer expectations include hope for technological advancements, increased accessibility and affordability, and a desire for more personalized and adaptable solutions tailored to the unique needs of individuals with SCI. CONCLUSION This comprehensive overview of consumer perspectives offers insights into the needs and preferences of the end-users, which are essential for creating user-centric technology and effectively translating research findings into clinical practice.
Collapse
Affiliation(s)
- Yalian Pei
- Department of Communication Disorders and SciencesSyracuse UniversitySyracuseNew YorkUSA
| | - Mari Tobita
- Departmentof Physical Medicine and RehabilitationRancho Los Amigos National Rehabilitation CenterDowneyCaliforniaUSA
- Rancho Research InstituteDowneyCaliforniaUSA
- Department of PM&RCharles R. Drew University of Medicine and ScienceLos AngelesCaliforniaUSA
| | - Benjamin Dirlikov
- Rehabilitation Research CenterSanta Clara Valley Medical CenterSan JoseCaliforniaUSA
| | - Dannae Arnold
- Research InstituteBaylor Scott & White Institute for RehabilitationDallasTexasUSA
| | | | - Ashraf Gorgey
- Department of Veterans AffairsHunter Holmes McGuire Medical CenterRichmondVirginiaUSA
- Department of PM&RVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
2
|
Gorgey AS, Khalil RE, Carter W, Rivers J, Chen Q, Lesnefsky EJ. Skeletal muscle hypertrophy and enhanced mitochondrial bioenergetics following electrical stimulation exercises in spinal cord injury: a randomized clinical trial. Eur J Appl Physiol 2025; 125:1075-1089. [PMID: 39578309 PMCID: PMC11950031 DOI: 10.1007/s00421-024-05661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
We examined the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC on mitochondrial electron transport chain (ETC) complexes and citrate synthase (CS) in adults with SCI. Thirty-two participants with chronic SCI were randomized to 24 weeks of NMES-RT + FES [n = 16 (14 males and 2 females) with an age range of 20-54 years old] or PMT + FES [n = 16 (12 males and 4 females) with an age range of 21-61 years old]. The NMES-RT + FES group underwent 12 weeks of surface NMES-RT using ankle weights followed by an additional 12 weeks of FES-LEC. The PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Using repeated measures design, muscle biopsies of the vastus lateralis were performed at baseline (BL), post-intervention 1 (P1) and post-intervention 2 (P2). Spectrophotometer was used to measure ETC complexes (I-III) and CS using aliquots of the homogenized muscle tissue. Magnetic resonance imaging was used to measure skeletal muscle CSAs. A time effect was noted on CS (P = 0.001) with an interaction between both groups (P = 0.01). 46% of the participants per group had zero activities of CI without any changes following both interventions. A time effect was noted in CII (P = 0.023) following both interventions. Finally, NMES-RT + FES increased CIII at P1 compared to BL (P = 0.023) without additional changes in P2 or following PMT + FES intervention. Skeletal muscle hypertrophy may potentially enhance mitochondrial bioenergetics after SCI. NMES-RT is likely to enhance the activities of complex III in sedentary persons with SCI. Clinical trials # NCT02660073.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders, Spinal Cord Injury & Disorders Service, Richmond VA Medical Center, Richmond, VA, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| | - Refka E Khalil
- Spinal Cord Injury and Disorders, Spinal Cord Injury & Disorders Service, Richmond VA Medical Center, Richmond, VA, USA
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeannie Rivers
- General Surgery, Richmond VA Medical Center, Richmond, VA, USA
| | - Qun Chen
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Richmond, VA, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Richmond, VA, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center, Richmond, VA, USA
- Medical Service, Richmond VA Medical Center, Richmond, VA, USA
| |
Collapse
|
3
|
Chen LW, Islam MS, Harvey LA, Whitehead N, Hossain MS, Rahman E, Taoheed F, Urme NA, Glinsky JV. Strength training with electrical stimulation has no or little effect on the very weak muscles of patients with spinal cord injury: a randomised trial. J Physiother 2025; 71:42-47. [PMID: 39675950 DOI: 10.1016/j.jphys.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
QUESTION Is electrical stimulation (ES) combined with strength training and usual care more effective than usual care alone in increasing the strength of very weak muscles in people with recent spinal cord injury (SCI)? DESIGN A randomised controlled trial with concealed allocation, intention-to-treat analysis and blinded outcome assessors. PARTICIPANTS Sixty participants with recent SCI were recruited from three SCI units in Australia and Bangladesh. INTERVENTIONS Participants were randomised to either a treatment or control group. A major muscle group of the upper or lower limb with Grade 1 or Grade 2 strength on a standard 6-point manual muscle test was selected. Participants in the experimental group received strength training combined with ES and usual care for the target muscle group over 8 weeks. Participants in the control group received only usual care. OUTCOME MEASURES Assessments were undertaken by a blinded assessor at baseline and 8 weeks. The primary outcome was voluntary muscle strength on a modified 13-point manual muscle test. The three secondary outcomes were participants' perceptions of strength, function and ability to perform self-selected goals. RESULTS The mean between-group difference for voluntary strength at 8 weeks was 0.7 out of 13 points (95% CI -0.7 to 2.1), where the clinically worthwhile treatment effect was deemed a priori as 1 point. None of the secondary outcomes demonstrated a clinically important effect. CONCLUSION Strength training combined with ES over 8 weeks has a negligible effect on the strength of very weak muscles in people with SCI. REGISTRATION ACTRN12621000197831.
Collapse
Affiliation(s)
- Lydia W Chen
- Department of Physiotherapy, Royal North Shore Hospital, Sydney, Australia; Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Md Shofiqul Islam
- Department of Physiotherapy, Bangladesh Health Professions Institute, the Academic Institute of the Centre for the Rehabilitation of the Paralysed, Dhaka, Bangladesh
| | - Lisa A Harvey
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, Sydney, Australia.
| | | | | | - Ehsanur Rahman
- Department of Physiotherapy and Rehabilitation, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Farjana Taoheed
- Centre for the Rehabilitation of the Paralysed, Dhaka, Bangladesh
| | - Nadia Afrin Urme
- Department of Physiotherapy, Bangladesh Health Professions Institute, the Academic Institute of the Centre for the Rehabilitation of the Paralysed, Dhaka, Bangladesh
| | - Joanne V Glinsky
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, Sydney, Australia
| |
Collapse
|
4
|
Tretter BL, Dolbow DR, Ooi V, Farkas GJ, Miller JM, Deitrich JN, Gorgey AS. Neurogenic Aging After Spinal Cord Injury: Highlighting the Unique Characteristics of Aging After Spinal Cord Injury. J Clin Med 2024; 13:7197. [PMID: 39685657 DOI: 10.3390/jcm13237197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Emanating from several decades of study into the effects of the aging process after spinal cord injury (SCI), "accelerated aging" has become a common expression as the SCI accelerates the onset of age-related pathologies. However, the aging process follows a distinct trajectory, characterized by unique patterns of decline that differ from those observed in the general population without SCI. Aging brings significant changes to muscles, bones, and hormones, impacting overall physical function. Muscle mass and strength begin to decrease with a reduction in muscle fibers and impaired repair mechanisms. Bones become susceptible to fractures as bone density decreases. Hormonal changes combined with decreased physical activity accelerate the reduction of muscle mass and increase in body fat. Muscle atrophy and skeletal muscle fiber type transformation occur rapidly and in a unique pattern after SCI. Bone loss develops more rapidly and results in an increased risk of fractures in body regions unique to individuals with SCI. Other factors, such as excessive adiposity, decreased testosterone and human growth hormone, and increased systemic inflammation, contribute to a higher risk of neuropathically driven obesity, dyslipidemia, glucose intolerance, insulin resistance, and increasing cardiovascular disease risk. Cardiorespiratory changes after SCI result in lower exercise heart rates, decreased oxygenation, and mitochondrial dysfunction. While it is important to acknowledge the accelerated aging processes after SCI, it is essential to recognize the distinct differences in the aging process between individuals without physical disabilities and those with SCI. These differences, influenced by neuropathology, indicate that it may be more accurate to describe the aging process in individuals with chronic SCI as neurogenic accelerated aging (NAA). Research should continue to address conditions associated with NAA and how to ameliorate the accelerated rate of premature age-related conditions. This review focuses on the NAA processes and the differences between them and the aging process in those without SCI. Recommendations are provided to help slow the development of premature aging conditions.
Collapse
Affiliation(s)
- Brittany L Tretter
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - David R Dolbow
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
- Physical Therapy Program, William Carey University, Hattiesburg, MS 39401, USA
| | - Vincent Ooi
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Joshua M Miller
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jakob N Deitrich
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Hamzaid NA, Manaf H, Azmi NL, Milosevic M, Spaich EG, Yoshida K, Gorgey AS, Ferrante S. The International Functional Electrical Stimulation Society (IFESS): Highlights from the IFESS conference at Rehabweek 2023. Artif Organs 2024; 48:421-425. [PMID: 38339848 DOI: 10.1111/aor.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The annual conference of the International Functional Electrical Stimulation Society (IFESS) was held in conjunction with the 7th RehabWeek Congress, from September 24 to 28, 2023 at the Resorts World Convention Centre on Sentosa Island, in Singapore. The Congress was a joint meeting of the International Consortium on Rehabilitation Technology (ICRT) together with 10 other societies in the field of assistive technology and rehabilitation engineering. The conference features comprehensive blend of technical and clinical context of FES, a sustained value the society has offered over many years. The cross- and inter- disciplinary approach of medicine, engineering, and science practiced in the FES community had enabled vibrant interaction, creation, and development of impactful and novel contributions to the field of FES, translating FES directly into highly relevant and sustainable solutions for the users.
Collapse
Affiliation(s)
- Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Haidzir Manaf
- Centre for Physiotherapy Study, Faculty of Health Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nur Liyana Azmi
- Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| | - Erika G Spaich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ken Yoshida
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, USA
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- School of Medicine, Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Simona Ferrante
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Street T, Brown L, Burridge J, Johnston T. Clinician perception of clinical guidelines and confidence in using electrical stimulation technologies. Artif Organs 2024; 48:203-205. [PMID: 37381913 DOI: 10.1111/aor.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Tamsyn Street
- Clinical Sciences and Engineering, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Lisa Brown
- Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, Massachusetts, USA
| | - Jane Burridge
- Health Sciences, University of Southampton, Southampton, UK
| | - Therese Johnston
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
7
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W, Zhang L, Guo S, Liu Y, Liu P, Zhang B, Tao L, Ding H, Qian H, Fu Q. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury. J Nanobiotechnology 2023; 21:451. [PMID: 38012570 PMCID: PMC10680254 DOI: 10.1186/s12951-023-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.
Collapse
Affiliation(s)
- Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shenyuan Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenhui Liu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Leilei Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beiting Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Tao
- Department of Orthopaedics, Dehong Hospital of Traditional Chinese Medicine, Dehong, 678400, Yunnan, China
| | - Hua Ding
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
8
|
Gorgey AS, Khalil RE, Carter W, Ballance B, Gill R, Khan R, Goetz L, Lavis T, Sima AP, Adler RA. Effects of two different paradigms of electrical stimulation exercise on cardio-metabolic risk factors after spinal cord injury. A randomized clinical trial. Front Neurol 2023; 14:1254760. [PMID: 37808500 PMCID: PMC10556465 DOI: 10.3389/fneur.2023.1254760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To examine the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC in adults with SCI on (1) oxygen uptake (VO2), insulin sensitivity and glucose disposal in adults with SCI; (2) Metabolic and inflammatory biomarkers; (3) skeletal muscle, intramuscular fat (IMF) and visceral adipose tissue (VAT) cross-sectional areas (CSAs). Materials and methods Thirty-three participants with chronic SCI (AIS A-C) were randomized to 24 weeks of NMES-RT + FES or PMT + FES. The NMES-RT + FES group underwent 12 weeks of evoked surface NMES-RT using ankle weights followed by an additional 12 weeks of progressive FES-LEC. The control group, PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Measurements were performed at baseline (BL; week 0), post-intervention 1 (P1; week 13) and post-intervention 2 (P2; week 25) and included FES-VO2 measurements, insulin sensitivity and glucose effectiveness using the intravenous glucose tolerance test; anthropometrics and whole and regional body composition assessment using dual energy x-ray absorptiometry (DXA) and magnetic resonance imaging to measure muscle, IMF and VAT CSAs. Results Twenty-seven participants completed both phases of the study. NMES-RT + FES group showed a trend of a greater VO2 peak in P1 [p = 0.08; but not in P2 (p = 0.25)] compared to PMT + FES. There was a time effect of both groups in leg VO2 peak. Neither intervention elicited significant changes in insulin, glucose, or inflammatory biomarkers. There were modest changes in leg lean mass following PMT + FES group. Robust hypertrophy of whole thigh muscle CSA, absolute thigh muscle CSA and knee extensor CSA were noted in the NMES-RT + FES group compared to PMT + FES at P1. PMT + FES resulted in muscle hypertrophy at P2. NMES-RT + FES resulted in a decrease in total VAT CSA at P1. Conclusion NMES-RT yielded a greater peak leg VO2 and decrease in total VAT compared to PMT. The addition of 12 weeks of FES-LEC in both groups modestly impacted leg VO2 peak. The addition of FES-LEC to NMES-RT did not yield additional increases in muscle CSA, suggesting a ceiling effect on signaling pathways following NMES-RT. Clinical trial registration identifier NCT02660073.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Boyd Ballance
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Ranjodh Gill
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rehan Khan
- Radiology Service, Richmond VA Medical Center, Richmond, VA, United States
| | - Lance Goetz
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Timothy Lavis
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Adam P. Sima
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert A. Adler
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|