1
|
Santana M, Sousa GF, Silva MCS, Guimaraes LC, de Oliveira LC, Prazeres PHDM, Furtado AS, Magalhães LSSM, Stocco TD, Viana BC, Peña-Garcia RR, Marciano FR, Leal BDS, dos Santos RF, Souza JMDCE, Ditz D, Costa Litwinski VV, Teixeira MM, Machado Pereira A, Guimarães PPG, Lobo AO. Antiviral Activity of Electrospun Polyamide Ultrathin Fibers Against SARS-CoV-2 Variant. ACS OMEGA 2025; 10:3551-3562. [PMID: 39926490 PMCID: PMC11800004 DOI: 10.1021/acsomega.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025]
Abstract
The development of new strategies to produce nanomaterials that can be used as personal protective equipment with antiviral activity and low toxicity is crucial. Electrospun ultrathin fibers have attracted considerable attention due to their potential for biomedical applications, including antiviral activity. Herein, we electrospun different grades of commercially available polyamide to produce ultrathin fibers and investigate their antiviral activity against SARS-CoV-2 Gamma lineage (P.1). We evaluated the morphology, chemical composition, and mechanical properties of the ultrathin fibers. We also investigated the in vitro cytotoxicity, hemolytic activity, and antiviral activity against SARS-CoV-2 Gamma lineage (P.1) of the developed ultrathin fibers. The ultrathin fibers had the following diameters and elastic moduli: (i) unmodified crude ultrathin polyamide (PAP) 0.59 μm and 3 MPa, (ii) polyamide Biotech (PAAM) 0.74 μm and 2.2 MPa, and (iii) Amni Virus-Bac OFF polyamide (PAVB) 0.69 μm and 1.06 MPa. The ultrathin PAP fibers showed increased antiviral activity compared to the other ultrathin fibers (PAAM and PAVB). None of the electrospun fibers showed cytotoxicity at the lowest concentration (12.5%). Additionally, hemolysis tests demonstrated a nonhemolytic profile for all fiber groups, reinforcing their biocompatibility and suitability for biomedical applications. The antiviral properties of the electrospun ultrathin PAP fibers, combined with their noncytotoxic and nonhemolytic characteristics, highlight their potential to be used as personal protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Moisés
V. Santana
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Gustavo F. Sousa
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Millena C. S. Silva
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Lays Cordeiro Guimaraes
- Department
of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Leonardo Camilo de Oliveira
- Department
of Biochemistry and Immunology, Federal
University of Minas Gerais, Belo Horizonte, Minas, Gerais 31270-901, Brazil
| | - Pedro H. D. M. Prazeres
- Department
of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - André S.
A. Furtado
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Leila S. S. M. Magalhães
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Thiago Domingues Stocco
- Bioengineering
Program, Technological and Scientific Institute, Brasil University, São
Paulo, São Paulo 08230-030, Brazil
| | - Bartolomeu C. Viana
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
- Department
of Physics, UFPI—Federal University
of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Ramon Raudel Peña-Garcia
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
- Academic
Unit of Cabo de Santo Agostinho, Federal
Rural University of Pernambuco, Cabo de Santo Agostinho, Pernambuco 52171-900, Brazil
| | - Fernanda Roberta Marciano
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
- Department
of Physics, UFPI—Federal University
of Piaui, Teresina, Piaui 64049-550, Brazil
| | - Bianca de Sousa Leal
- Biochemistry
and Pharmacology Department, Health Sciences Center, UFPI−Federal University of Piauí, Teresina, Piaui 64049-550, Brazil
| | - Rosimeire Ferreira dos Santos
- Biochemistry
and Pharmacology Department, Health Sciences Center, UFPI−Federal University of Piauí, Teresina, Piaui 64049-550, Brazil
| | - João Marcelo de Castro e Souza
- Biochemistry
and Pharmacology Department, Health Sciences Center, UFPI−Federal University of Piauí, Teresina, Piaui 64049-550, Brazil
| | - Dalton Ditz
- Biochemistry
and Pharmacology Department, Health Sciences Center, UFPI−Federal University of Piauí, Teresina, Piaui 64049-550, Brazil
| | - Vivian Vasconcelos Costa Litwinski
- Department
of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mauro Martins Teixeira
- Department
of Biochemistry and Immunology, Federal
University of Minas Gerais, Belo Horizonte, Minas, Gerais 31270-901, Brazil
| | | | - Pedro P. G. Guimarães
- Department
of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary
Laboratory for Advanced Materials, UFPI—Federal
University of Piaui, Teresina, Piaui 64049-550, Brazil
| |
Collapse
|
2
|
Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging Trends of Nanofibrous Piezoelectric and Triboelectric Applications: Mechanisms, Electroactive Materials, and Designed Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401264. [PMID: 38545963 DOI: 10.1002/adma.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
3
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
4
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cimini A, Borgioni A, Passarini E, Mancini C, Proietti A, Buccini L, Stornelli E, Schifano E, Dinarelli S, Mura F, Sergi C, Bavasso I, Cortese B, Passeri D, Imperi E, Rinaldi T, Picano A, Rossi M. Upscaling of Electrospinning Technology and the Application of Functionalized PVDF-HFP@TiO 2 Electrospun Nanofibers for the Rapid Photocatalytic Deactivation of Bacteria on Advanced Face Masks. Polymers (Basel) 2023; 15:4586. [PMID: 38231986 PMCID: PMC10708761 DOI: 10.3390/polym15234586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In recent years, Electrospinning (ES) has been revealed to be a straightforward and innovative approach to manufacture functionalized nanofiber-based membranes with high filtering performance against fine Particulate Matter (PM) and proper bioactive properties. These qualities are useful for tackling current issues from bacterial contamination on Personal Protective Equipment (PPE) surfaces to the reusability of both disposable single-use face masks and respirator filters. Despite the fact that the conventional ES process can be upscaled to promote a high-rate nanofiber production, the number of research works on the design of hybrid materials embedded in electrospun membranes for face mask application is still low and has mainly been carried out at the laboratory scale. In this work, a multi-needle ES was employed in a continuous processing for the manufacturing of both pristine Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) nanofibers and functionalized membrane ones embedded with TiO2 Nanoparticles (NPs) (PVDF-HFP@TiO2). The nanofibers were collected on Polyethylene Terephthalate (PET) nonwoven spunbond fabric and characterized by using Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman spectroscopy, and Atomic Force Microscopy (AFM) analysis. The photocatalytic study performed on the electrospun membranes proved that the PVDF-HFP@TiO2 nanofibers provide a significant antibacterial activity for both Staphylococcus aureus (~94%) and Pseudomonas aeruginosa (~85%), after only 5 min of exposure to a UV-A light source. In addition, the PVDF-HFP@TiO2 nanofibers exhibit high filtration efficiency against submicron particles (~99%) and a low pressure drop (~3 mbar), in accordance with the standard required for Filtering Face Piece masks (FFPs). Therefore, these results aim to provide a real perspective on producing electrospun polymer-based nanotextiles with self-sterilizing properties for the implementation of advanced face masks on a large scale.
Collapse
Affiliation(s)
- Adriano Cimini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Industrial Research Laboratory, LABOR s.r.l., Via Giacomo Peroni 386, 00131 Rome, Italy
| | - Alessia Borgioni
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Elena Passarini
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Chiara Mancini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Anacleto Proietti
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Luca Buccini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Eleonora Stornelli
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Emily Schifano
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Simone Dinarelli
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudia Sergi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, 00184 Rome, Italy
| | - Irene Bavasso
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, 00184 Rome, Italy
| | - Barbara Cortese
- National Research Council (CNR), Institute of Nanotechnology (CNR Nanotec), c/o Edificio Fermi, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Imperi
- Industrial Research Laboratory, LABOR s.r.l., Via Giacomo Peroni 386, 00131 Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Alfredo Picano
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|