1
|
Britten N, Blackie N, Reader J, Booth RE, Mahendran SA. Analysis of Cattle Foot Lesions Recorded at Trimming in the Southwest of England. Animals (Basel) 2025; 15:829. [PMID: 40150360 PMCID: PMC11939767 DOI: 10.3390/ani15060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The UK has a high incidence of lameness in cattle, which is costly in terms of economics and welfare. Most causes of bovine lameness originate in the foot but there are several different conditions causing lameness. Quantifying the relative prevalence of different lameness causing lesions allows for the focus of preventative measures and research on the most common conditions. METHODS This study analysed trimming records from 23 professional foot trimmers working in the Southwest of England. A total of 97,944 recorded lesions over a 5-year period were analysed for lesion identity, lesion severity, repeat presentation, foot affected, claw affected and whether they were from dairy or beef cattle. RESULTS The most frequently recorded lesions were digital dermatitis (32%), white line disease (21%), sole ulcer (19%) and sole haemorrhage (13%). White line disease had the highest percentage of lesions requiring veterinary attention and most frequently re-presented. Most lesions were in hind feet and there was a small but significantly greater number recorded in right feet. Beef cattle had a higher percentage of digital dermatitis and lower percentage of sole ulcer compared with dairy cattle. CONCLUSIONS Digital dermatitis was the most common foot lesion of all cattle types. Most feet with lesions only appeared in the data set once, suggesting broadly that foot trimming was largely effective at resolving new foot lesions. More white line lesions were re-presented, along with having more severe grades compared with other lesions. Therapeutic trimming of chronic lesions appeared to be less successful, with re-presentations, on average, every 93 days, compromising welfare for extended periods, and requiring consideration of different veterinary treatment options.
Collapse
Affiliation(s)
- Nick Britten
- Royal Veterinary College, Hatfield AL9 7TA, UK; (N.B.); (R.E.B.); (S.A.M.)
- Synergy Farm Health, Rampisham Down DT2 0HS, UK;
| | - Nicola Blackie
- Royal Veterinary College, Hatfield AL9 7TA, UK; (N.B.); (R.E.B.); (S.A.M.)
| | - Jon Reader
- Synergy Farm Health, Rampisham Down DT2 0HS, UK;
| | - Richard E. Booth
- Royal Veterinary College, Hatfield AL9 7TA, UK; (N.B.); (R.E.B.); (S.A.M.)
| | | |
Collapse
|
2
|
Idris M, Sullivan M, Gaughan JB, Phillips CJC. The Relationship between the Infrared Eye Temperature of Beef Cattle and Associated Biological Responses at High Environmental Temperatures. Animals (Basel) 2024; 14:2898. [PMID: 39409847 PMCID: PMC11475250 DOI: 10.3390/ani14192898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cattle in regions with high ambient temperatures are at risk of heat stress. Early detection is important to allow action to be taken to minimise the risks to cattle exposed to thermal stress. This study aimed to investigate the impact of heat stress on IRT-Eye temperature and its association with the behavioural and physiological responses of heat-stressed Angus steers (n = 24) on finisher and or substituted diets. Overall, 2 cohorts of 12 Angus steers were individually housed in a climate-controlled facility to examine responses to heat stress when fed on a standard finisher diet, based on a high percentage of cereal grains, and on a substituted diet in which 8% of the grains were replaced by an isoenergetic amount of lucerne hay. Exposing feedlot cattle to hot environmental conditions increased IRT-Eye temperature, which had a strong association with behaviour and physiology. There was no evidence of differences between the different dietary cohorts. The cattle with increased IRT-Eye temperature showed stress-related responses, including a downward-facing head, ears directed backwards, and other indicators of heat stress such as increased panting, standing, and increased rumen temperature. The strong association of IRT-Eye temperature with stress-related behaviours, as well as with rumen temperature and panting behaviour, highlights the potential for IRT-Eye to be utilised as a non-invasive tool to assess cattle responses in hot conditions.
Collapse
Affiliation(s)
- Musadiq Idris
- Department of Physiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Megan Sullivan
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (M.S.); (J.B.G.)
| | - John B. Gaughan
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (M.S.); (J.B.G.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Faculty of Humanities, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwalki 1, 51014 Tartu, Estonia
| |
Collapse
|
3
|
Rebez EB, Sejian V, Silpa MV, Kalaignazhal G, Thirunavukkarasu D, Devaraj C, Nikhil KT, Ninan J, Sahoo A, Lacetera N, Dunshea FR. Applications of Artificial Intelligence for Heat Stress Management in Ruminant Livestock. SENSORS (BASEL, SWITZERLAND) 2024; 24:5890. [PMID: 39338635 PMCID: PMC11435989 DOI: 10.3390/s24185890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Heat stress impacts ruminant livestock production on varied levels in this alarming climate breakdown scenario. The drastic effects of the global climate change-associated heat stress in ruminant livestock demands constructive evaluation of animal performance bordering on effective monitoring systems. In this climate-smart digital age, adoption of advanced and developing Artificial Intelligence (AI) technologies is gaining traction for efficient heat stress management. AI has widely penetrated the climate sensitive ruminant livestock sector due to its promising and plausible scope in assessing production risks and the climate resilience of ruminant livestock. Significant improvement has been achieved alongside the adoption of novel AI algorithms to evaluate the performance of ruminant livestock. These AI-powered tools have the robustness and competence to expand the evaluation of animal performance and help in minimising the production losses associated with heat stress in ruminant livestock. Advanced heat stress management through automated monitoring of heat stress in ruminant livestock based on behaviour, physiology and animal health responses have been widely accepted due to the evolution of technologies like machine learning (ML), neural networks and deep learning (DL). The AI-enabled tools involving automated data collection, pre-processing, data wrangling, development of appropriate algorithms, and deployment of models assist the livestock producers in decision-making based on real-time monitoring and act as early-stage warning systems to forecast disease dynamics based on prediction models. Due to the convincing performance, precision, and accuracy of AI models, the climate-smart livestock production imbibes AI technologies for scaled use in the successful reducing of heat stress in ruminant livestock, thereby ensuring sustainable livestock production and safeguarding the global economy.
Collapse
Affiliation(s)
- Ebenezer Binuni Rebez
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Veerasamy Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | | | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India
| | - Duraisamy Thirunavukkarasu
- Department of Veterinary and Animal Husbandry Extension Education, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637002, India
| | - Chinnasamy Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Kumar Tej Nikhil
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
| | - Jacob Ninan
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry 605009, India
| | - Artabandhu Sahoo
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Idris M, Sullivan M, Gaughan JB, Phillips CJC. Behavioural Responses of Beef Cattle to Hot Conditions. Animals (Basel) 2024; 14:2444. [PMID: 39199976 PMCID: PMC11350744 DOI: 10.3390/ani14162444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Cattle are increasingly exposed to hot temperatures as a result of climate change, and a better understanding of behavioural responses could be beneficial for the diagnosis of heat loads. The changes in the positioning of key body parts, feeding behaviour, body maintenance, and respiratory dynamics were assessed in 24 Black Angus steers individually exposed to hot conditions and fed a finisher diet based on cereal grain or a substituted diet (8% of the grain replaced by an isoenergetic amount of lucerne hay). Increased respiration rate during the heat load period, compared to the recovery period, was associated with increased stepping, especially by left limbs. Cattle also reduced eating, grooming, and scratching during the heat load period. The lowered head, backward ear, vertical or raised tail, and increased respiration rate and panting persisted in cattle during the heat load period. Cattle on the cereal grain diet stood for longer and were more likely to hold their ears backward and tail vertical than those on the substituted diet. We conclude that these behaviours could be used to detect animals that are most affected and that changing from a cereal-based diet to a substituted diet containing a higher amount of fibre, such as lucerne hay, can reduce hyperthermic behavioural responses to a heat load.
Collapse
Affiliation(s)
- Musadiq Idris
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Megan Sullivan
- School of Agriculture and Food Sustainability, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (M.S.); (J.B.G.)
| | - John B. Gaughan
- School of Agriculture and Food Sustainability, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (M.S.); (J.B.G.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy Institute, Faculty of Humanities, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Science, Estonia University of Life Sciences, 51014 Tartu, Estonia
| |
Collapse
|
5
|
Crump A, Jenkins K, Bethell EJ, Ferris CP, Arnott G. Pasture access and eye temperature in dairy cows. J APPL ANIM WELF SCI 2024; 27:234-242. [PMID: 35416093 PMCID: PMC11789712 DOI: 10.1080/10888705.2022.2063020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pasture access can benefit dairy cows' behavior, health, and welfare, but herds are increasingly housed indoors full-time. Recent infrared thermal-imaging (thermography) studies suggest that higher eye temperatures may be a physiological indicator of chronic stress. We, therefore, hypothesized that, compared to cows with pasture access, cows housed indoors full-time would have higher eye temperatures. In a two-phase crossover experiment, 29 Holstein-Friesian dairy cows experienced 18 days of overnight pasture access and 18 days of full-time indoor housing. We measured each animal's eye temperature 16 times (eight/phase). During Phase One, cows with pasture access had higher eye temperatures than cows housed indoors full-time (contrary to our hypothesis). However, during Phase Two, cows with pasture access had lower eye temperatures than cows housed indoors full-time. It is, therefore, unclear whether eye temperature reflected disparities in dairy cow welfare between different housing treatments.
Collapse
Affiliation(s)
- Andrew Crump
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Kirsty Jenkins
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Emily J Bethell
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Conrad P Ferris
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Hillsborough, UK
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
Rogers LJ. Knowledge of lateralized brain function can contribute to animal welfare. Front Vet Sci 2023; 10:1242906. [PMID: 37601762 PMCID: PMC10436595 DOI: 10.3389/fvets.2023.1242906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The specialized functions of each hemisphere of the vertebrate brain are summarized together with the current evidence of lateralized behavior in farm and companion animals, as shown by the eye or ear used to attend and respond to stimuli. Forelimb preference is another manifestation of hemispheric lateralization, as shown by differences in behavior between left- and right-handed primates, left- and right-pawed dogs and cats, and left- and right-limb-preferring horses. Left-limb preference reflects right hemisphere use and is associated with negative cognitive bias. Positive cognitive bias is associated with right-limb and left-hemisphere preferences. The strength of lateralization is also associated with behavior. Animals with weak lateralization of the brain are unable to attend to more than one task at a time, and they are more easily stressed than animals with strong lateralization. This difference is also found in domesticated species with strong vs. weak limb preferences. Individuals with left-limb or ambilateral preference have a bias to express functions of the right hemisphere, heightened fear and aggression, and greater susceptibility to stress. Recognition of lateralized behavior can lead to improved welfare by detecting those animals most likely to suffer fear and distress and by indicating housing conditions and handling procedures that cause stress.
Collapse
Affiliation(s)
- Lesley J. Rogers
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
7
|
Hofstra G, van Abeelen H, Duindam M, Houben B, Kuijpers J, Arendsen T, van der Kolk M, Rapp F, van Spaendonk J, Gonzales JL, Petie R. Automated monitoring and detection of disease using a generic facial feature scoring system - A case study on FMD infected cows. Prev Vet Med 2023; 213:105880. [PMID: 36841043 DOI: 10.1016/j.prevetmed.2023.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Digital images are becoming more readily available and possibilities for image processing are developing rapidly. This opens the possibility to use digital images to monitor and detect diseases in animals. In this paper we present 1) a generic facial feature scoring system based on seven facial features, 2) manual scores of images of Holstein Frisian heifers during foot-and-mouth disease vaccine efficacy trials and 3) automatic disease scores of the same animals. The automatic scoring system was based on the manual version and trained on annotated images from the manual scoring system. For both systems we found an increase in disease scores three days post infection, followed by a recovery. This temporal pattern matched with observations made by animal caretakers. Importantly, the automatic system was able to discern animals that were protected by the vaccine, and did not develop blisters at the feet, and animals that were not protected. Finally, automatic scores could be used to detect healthy and sick animals with a sensitivity and specificity of 0.94 on the second and third days following infection in an experimental setting. This generic facial feature disease scoring system could be further developed and extended to lactating Holstein Frisian dairy cows, other breeds and other infectious diseases. The system could be applied during animal experiments or, after further development, in a farm setting.
Collapse
Affiliation(s)
- Gerben Hofstra
- HAS University of Applied Science, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Hilde van Abeelen
- HAS University of Applied Science, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Marleen Duindam
- HAS University of Applied Science, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Bas Houben
- HAS University of Applied Science, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Joris Kuijpers
- HAS University of Applied Science, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Tim Arendsen
- AVANS University of Applied Science, Onderwijsboulevard 215, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Mathijs van der Kolk
- AVANS University of Applied Science, Onderwijsboulevard 215, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Felix Rapp
- AVANS University of Applied Science, Onderwijsboulevard 215, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Jessy van Spaendonk
- AVANS University of Applied Science, Onderwijsboulevard 215, 5223 DE 's-Hertogenbosch, the Netherlands
| | - José L Gonzales
- Epidemiology Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Ronald Petie
- Epidemiology Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands.
| |
Collapse
|
8
|
Idris M, Gay CC, Woods IG, Sullivan M, Gaughan JB, Phillips CJC. Automated Quantification of the Behaviour of Beef Cattle Exposed to Heat Load Conditions. Animals (Basel) 2023; 13:ani13061125. [PMID: 36978665 PMCID: PMC10044595 DOI: 10.3390/ani13061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cattle change their behaviour in response to hot temperatures, including by engaging in stepping that indicates agitation. The automated recording of these responses would be helpful in the timely diagnosis of animals experiencing heat loading. Behavioural responses of beef cattle to hot environmental conditions were studied to investigate whether it was possible to assess behavioural responses by video-digitised image analysis. Open-source automated behavioural quantification software was used to record pixel changes in 13 beef cattle videorecorded in a climate-controlled chamber during exposure to a simulated typical heat event in Queensland, Australia. Increased digitised movement was observed during the heat event, which was related to stepping and grooming/scratching activities in standing animals. The 13 cattle were exposed in two cohorts, in which the first group of cattle (n = 6) was fed a standard finisher diet based on a high percentage of cereal grains, and the second group of cattle (n = 7) received a substituted diet in which 8% of the grains were replaced by lucerne hay. The second group displayed a smaller increase in digitised movements on exposure to heat than the first, suggesting less discomfort under hot conditions. The results suggest that cattle exposed to heat display increased movement that can be detected automatically by video digitisation software, and that replacing some cereal grain with forage in the diet of feedlot cattle may reduce the measured activity responses to the heat.
Collapse
Affiliation(s)
- Musadiq Idris
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Caitlin C Gay
- School of Veterinary Science, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Ian G Woods
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA
| | - Megan Sullivan
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Clive J C Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwalki 1, 51014 Tartu, Estonia
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
9
|
Uddin J, McNeill DM, Phillips CJC. Infrared thermography as a tool for the measurement of negative emotions in dairy cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:219-231. [PMID: 36402916 DOI: 10.1007/s00484-022-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In commercial dairy cows, the conditions in which they are kept may lead to negative emotional states associated with the development of chronic physiological and behavioural abnormalities that may compromise their health, welfare and productivity. Such states include fear, stress or anxiety. Behavioural rather than physiological tests are more likely to be used to indicate these states but can be limited by their subjectivity, need for specialised infrastructure and training (of the operator and sometimes the animal) and the time-consuming nature of data collection. Popularly used physiological measures such as blood cortisol may be more appropriate for acute rather than chronic assessments but are easily confounded, for example by a response to the act of measurement per se. More sophisticated physiological measures such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) may be impractical due to cost and time and, like blood cortisol, have the confounding associated with the act of measurement. By contrast, infrared thermography of external body surfaces is remote, non-invasive, easily repeated and follows an objective methodology, allowing longitudinal data acquisition for the inference of changes in chronic emotional state over time. The objective of this review was to investigate the potential of infrared thermography to measure cow emotions. In lactating dairy cows, maximum IRT of the eyes and coronary band of the limbs seem to be most representative of thermoregulatory changes, which are repeatable and correlate with behavioural and physiological indicators of emotional state. IRT methodologies have the potential to become a fundamental tool for the objective assessment of welfare state in dairy cows.
Collapse
Affiliation(s)
- Jashim Uddin
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - David M McNeill
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - Clive J C Phillips
- Institute of Veterinary Medicine and Animal Science, Estonia University of Life Sciences, Tartu, Estonia
- Curtin University Sustainability Policy Institute, Kent St., Bentley, Perth, WA, 6102, Australia
| |
Collapse
|
10
|
Keeling LJ, Winckler C, Hintze S, Forkman B. Towards a Positive Welfare Protocol for Cattle: A Critical Review of Indicators and Suggestion of How We Might Proceed. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.753080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current animal welfare protocols focus on demonstrating the absence (or at least low levels) of indicators of poor welfare, potentially creating a mismatch between what is expected by society (an assurance of good animal welfare) and what is actually being delivered (an assurance of the absence of welfare problems). This paper explores how far we have come, and what work still needs to be done, if we are to develop a protocol for use on commercial dairy farms where the aim is to demonstrate the presence of positive welfare. Following conceptual considerations around a perceived “ideal” protocol, we propose that a future protocol should be constructed (i) of animal-based measures, (ii) of indicators of affective state, and (iii) be structured according to indicators of short-term emotion, medium-term moods and long-term cumulative assessment of negative and positive experiences of an animal's life until now (in contrast to the current focus on indicators that represent different domains/criteria of welfare). These three conditions imposed the overall structure within which we selected our indicators. The paper includes a critical review of the literature on potential indicators of positive affective states in cattle. Based on evidence about the validity and reliability of the different indicators, we select ear position, play, allogrooming, brush use and QBA as candidate indicators that we suggest could form a prototype positive welfare protocol. We emphasise that this prototype protocol has not been tested in practice and so it is perhaps not the protocol itself that is the main outcome of this paper, but the process of trying to develop it. In a final section of this paper, we reflect on some of the lessons learnt from this exercise and speculate on future perspectives. For example, while we consider we have moved towards a prototype positive welfare protocol for short-term affective states, future research energy should be directed towards valid indicators for the medium and long-term.
Collapse
|
11
|
Uddin J, Phillips CJ, Auboeuf M, McNeill DM. Relationships between body temperatures and behaviours in lactating dairy cows. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Siniscalchi M, d’Ingeo S, Quaranta A. Lateralized emotional functioning in domestic animals. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Idris M, Uddin J, Sullivan M, McNeill DM, Phillips CJC. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals (Basel) 2021; 11:E71. [PMID: 33401687 PMCID: PMC7824675 DOI: 10.3390/ani11010071] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/26/2023] Open
Abstract
Cattle are susceptible to heat stress, especially those kept on high levels of nutrition for the purpose of maximising growth rates, which leads to a significant heat increment in their bodies. Consequences include compromised health and productivity and mortalities during extreme events, as well as serious economic loss. Some measures of heat stress, such as plasma cortisol and temperature in the rectum, vagina, or rumen, are invasive and therefore unlikely to be used on farms. These may cause additional stress to the animal due to handling, and that stress in itself can confound the measure. Consequently, it is desirable to find non-invasive alternatives. Panting score (PS), cortisol metabolites in faeces, milk, or hair, and the infrared temperature of external body surfaces are all potentially useful. Respiratory indicators are difficult and time consuming to record accurately, and cortisol metabolites are expensive and technically difficult to analyse. Infrared temperature appears to offer the best solution but requires further research to determine the thresholds that define when corrective actions are required to ensure optimal health and productivity. Research in this area has the potential to ultimately improve the welfare and profitability of cattle farming.
Collapse
Affiliation(s)
- Musadiq Idris
- Department of Physiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
- Centre for Animal Welfare and Ethics, School of Veterinary Science, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (J.U.); (D.M.M.)
| | - Jashim Uddin
- Centre for Animal Welfare and Ethics, School of Veterinary Science, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (J.U.); (D.M.M.)
| | - Megan Sullivan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - David M. McNeill
- Centre for Animal Welfare and Ethics, School of Veterinary Science, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia; (J.U.); (D.M.M.)
| | - Clive J. C. Phillips
- Curtin University Sustainable Policy Institute, Kent St., Bentley, Perth, WA 6102, Australia;
| |
Collapse
|
14
|
Do dietary and milking frequency changes during a gradual dry-off affect feed-related attention bias and visual lateralisation in dairy cows? Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2019.104923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Uddin J, Phillips CJ, Goma AA, McNeill DM. Relationships between infrared temperature and laterality. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.104855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sheep Quickstep while the Floor Rock and Rolls: Visuomotor Lateralization during Simulated Sea Travel. Animals (Basel) 2019; 9:ani9090700. [PMID: 31540547 PMCID: PMC6770936 DOI: 10.3390/ani9090700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
Unpredictable floor motions during transport disturbs animals' balance, requiring stepping to move the centre of gravity in the direction of body movement. When repeated regularly, this may be stressful, requiring involvement of the right brain hemisphere, hence we investigated the existence of behavioral laterality in sheep during prolonged floor motions. Six sheep were restrained in pairs on a programmable rocking platform, in which they were unable to turn around. They were exposed to three continuous rocking motion treatments (roll, pitch or both) in a regular or irregular pattern for 1 h periods in a changeover design. Right forelimb and left hindlimb diagonal stepping was more frequent in response to the motion treatment of irregular roll and pitch, which previous research has suggested to be the most stressful from heart rate measurements. An overall strategy to maintain balance appeared to be the use of the right hindlimb as a stabilizer, which was repositioned least often of all limbs until towards the end of the hour of experimental treatment. Of each tested pair, sheep restrained on the left side of the rocking floor stepped significantly often than its partner restrained on the right side, and we postulate the existence of visuomotor lateralization as left restrained sheep were unable to view their partner within the field of view of their left eye. We also investigated which side sheep lie down on, which if left lateralized could explain our observed bipedal diagonal control of sheep balance under stress. From the observation of 412 web-based images of sheep, there was an overall left-sided laterality to their lying, as has been observed in cattle. We conclude that stepping activity in sheep in response to a motion stressor is lateralized, providing evidence that floor motion experienced in transport may induce stress responses.
Collapse
|
17
|
Abstract
In functional laterality research, most ungulate livestock species have until recently been mainly overlooked. However, there are many scientific and practical benefits of studying laterality in ungulate livestock. As social, precocial and domestic species, they may offer insight into the mechanisms involved in the ontogeny and phylogeny of functional laterality and help to better understand the role of laterality in animal welfare. Until now, most studies on ungulate livestock have focused on motor laterality, but interest in other lateralized functions, e.g., cognition and emotions, is growing. Increasingly more studies are also focused on associations with age, sex, personality, health, stress, production and performance. Although the full potential of research on laterality in ungulate livestock is not yet exploited, findings have already shed new light on central issues in cognitive and emotional processing and laid the basis for potentially useful applications in future practice, e.g., stress reduction during human-animal interactions and improved assessments of health, production and welfare. Future research would benefit from further integration of basic laterality methodology (e.g., testing for individual preferences) and applied ethological approaches (e.g., established emotionality tests), which would not only improve our understanding of functional laterality but also benefit the assessment of animal welfare.
Collapse
|
18
|
Robins A. The Alpha Hypothesis: Did Lateralized Cattle-Human Interactions Change the Script for Western Culture? Animals (Basel) 2019; 9:E638. [PMID: 31480488 PMCID: PMC6769460 DOI: 10.3390/ani9090638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Domestic cattle possess lateralized cognitive processing of human handlers. This has been recently demonstrated in the preference for large groups of cattle to view a human closely within the predominantly left visual field. By contrast, the same stimulus viewed predominantly within the right visual field promotes a significantly greater frequency of dispersal from a standing position, including flight responses. The respective sets of behaviours correspond with the traditional terms of "near side" for the left side of cattle and horses, and the "off" or "far side" for the right side. These traditional terms of over 300 years usage in the literature communicate functional practicalities for handling livestock and the recognition of lateralized cognitive processing. In this review, the possibility of even earlier recognition and the significance of laterality in cattle-human interaction was argued, from the earliest representations of the letter "A", originally illustrated from nearly 4000 years before the present time as the head of an ox as viewed not from the front or from the right, but from the left (near) side. By extension, this knowledge of lateralization in cattle may represent the earliest written example of applied ethology-the study of the behaviour of animals under human management.
Collapse
Affiliation(s)
- Andrew Robins
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton Campus, Gatton, Queensland 4343, Australia.
| |
Collapse
|