1
|
Narita R, Sakurai Y. Estimation of internal-exposure contribution in radiation dose exposure for boron neutron capture therapy. RADIATION PROTECTION DOSIMETRY 2024; 200:623-628. [PMID: 38527175 DOI: 10.1093/rpd/ncae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/27/2024]
Abstract
Although boron neutron capture therapy (BNCT) causes minor damage to normal cells owing to the nuclear reactions induced by neutrons with major elements of tissues such as hydrogen and nitrogen, it is useful to estimate the accurate exposure dose for radiation protection. This study aims to estimate the contribution of internal exposure in radiation exposure dose for BNCT. The study was performed by referring to clinical studies at a reactor-based BNCT facility on the basis of computational dosimetry. Five irradiation regions of head and neck were selected for the estimation. The results suggest that external exposure occurred primarily in and around the irradiation field. Furthermore, during the exposure dose estimation in BNCT, internal exposure was found to be not negligible, implying that the irradiation regions in treatment planning must be considered for avoiding damage to certain critical organs that are susceptible to internal exposure.
Collapse
Affiliation(s)
- Ryosuke Narita
- Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
2
|
Seneviratne D, Advani P, Trifiletti DM, Chumsri S, Beltran CJ, Bush AF, Vallow LA. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers (Basel) 2022; 14:cancers14123009. [PMID: 35740674 PMCID: PMC9221373 DOI: 10.3390/cancers14123009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary BNCT is a biologically targeted, densely ionizing form of radiation therapy that allows for increased tumor cell kill, while reducing toxicity to surrounding normal tissues. Although BNCT has been investigated in the treatment of head and neck cancers and recurrent brain tumors, its applicability to breast cancer has not been previoulsy investigated. In this review we discuss the physical and biological properties of various boronated compounds, and advantages and challenges associated with the potential use of BNCT in the treatment of breast cancer. Abstract BNCT is a high LET radiation therapy modality that allows for biologically targeted radiation delivery to tumors while reducing normal tissue impacts. Although the clinical use of BNCT has largely been limited to phase I/II trials and has primarily focused on difficult-to-treat malignancies such as recurrent head and neck cancer and recurrent gliomas, recently there has been a renewed interest in expanding the use of BNCT to other disease sites, including breast cancer. Given its high LET characteristics, its biologically targeted and tumor specific nature, as well as its potential for use in complex treatment settings including reirradiation and widespread metastatic disease, BNCT offers several unique advantages over traditional external beam radiation therapy. The two main boron compounds investigated to date in BNCT clinical trials are BSH and BPA. Of these, BPA in particular shows promise in breast cancer given that is taken up by the LAT-1 amino acid transporter that is highly overexpressed in breast cancer cells. As the efficacy of BNCT is directly dependent on the extent of boron accumulation in tumors, extensive preclinical efforts to develop novel boron delivery agents have been undertaken in recent years. Preclinical studies have shown promise in antibody linked boron compounds targeting ER/HER2 receptors, boron encapsulating liposomes, and nanoparticle-based boron delivery systems. This review aims to summarize the physical and biological basis of BNCT, the preclinical and limited clinical data available to date, and discuss its potential to be utilized for the successful treatment of various breast cancer disease states.
Collapse
Affiliation(s)
- Danushka Seneviratne
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Pooja Advani
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
- Correspondence:
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Saranya Chumsri
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Aaron F. Bush
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| |
Collapse
|
3
|
Loap P, De Marzi L, Almeida CE, Barcellini A, Bradley J, de Santis MC, Dendale R, Jimenez R, Orlandi E, Kirova Y. Hadrontherapy techniques for breast cancer. Crit Rev Oncol Hematol 2021; 169:103574. [PMID: 34958916 DOI: 10.1016/j.critrevonc.2021.103574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy plays a key role in breast cancer treatment, and recent technical advances have been made to improve the therapeutic window by limiting the risk of radiation-induced toxicity or by increasing tumor control. Hadrontherapy is a form a radiotherapy relying on particle beams; compared with photon beams, particle beams have specific physical, radiobiological and immunological properties, which can be valuable in diverse clinical situations. To date, available hadrontherapy techniques for breast cancer irradiation include proton therapy, carbon ion radiation therapy, fast neutron therapy and boron neutron capture therapy. This review analyzes the current rationale and level of evidence for each hadrontherapy technique for breast cancer.
Collapse
Affiliation(s)
- Pierre Loap
- Proton Therapy Center, Institut Curie, Orsay, France.
| | | | - Carlos Eduardo Almeida
- Department of Radiological Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Julie Bradley
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, United States
| | | | - Remi Dendale
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Rachel Jimenez
- Massachusetts General Hospital, Boston, MA, United States
| | - Ester Orlandi
- National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Youlia Kirova
- Proton Therapy Center, Institut Curie, Orsay, France
| |
Collapse
|
4
|
Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021; 11:601820. [PMID: 33718149 PMCID: PMC7952987 DOI: 10.3389/fonc.2021.601820] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/27/2021] [Indexed: 01/22/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an emerging treatment modality aimed at improving the therapeutic ratio for traditionally difficult to treat tumors. BNCT utilizes boronated agents to preferentially deliver boron-10 to tumors, which, after undergoing irradiation with neutrons, yields litihium-7 and an alpha particle. The alpha particle has a short range, therefore preferentially affecting tumor tissues while sparing more distal normal tissues. To date, BNCT has been studied clinically in a variety of disease sites, including glioblastoma multiforme, meningioma, head and neck cancers, lung cancers, breast cancers, hepatocellular carcinoma, sarcomas, cutaneous malignancies, extramammary Paget's disease, recurrent cancers, pediatric cancers, and metastatic disease. We aim to provide an up-to-date and comprehensive review of the studies of each of these disease sites, as well as a review on the challenges facing adoption of BNCT.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel K Ebner
- Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William C Stross
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
5
|
Khan AA, Maitz C, Quanyu C, Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLoS One 2019; 14:e0222022. [PMID: 31479484 PMCID: PMC6719824 DOI: 10.1371/journal.pone.0222022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022] Open
Abstract
In the United States, breast cancer is one of the most common and the second leading cause of cancer-related death in women. Treatment modalities for mammary tumor are surgical removal of the tumor tissue followed by either chemotherapy or radiotherapy or both. Radiation therapy is a whole body irradiation regimen that suppresses the immune system leaving hosts susceptible to infection or secondary tumors. Boron neutron capture therapy (BNCT) in that regard is more selective, the cells that are mostly affected are those that are loaded with 109 or more 10B atoms. Previously, we have described that liposomal encapsulation of boron-rich compounds such as TAC and MAC deliver a high payload to the tumor tissue when injected intravenously. Here we report that liposome-mediated boron delivery to the tumor is inversely proportional to the size of the murine mammary (EMT-6) tumors. The plausible reason for the inverse ratio of boron and EMT-6 tumor size is the necrosis in these tumors, which is more prominent in the large tumors. The large tumors also have receding blood vessels contributing further to poor boron delivery to these tumors. We next report that the presence of boron in blood is essential for the effects of BNCT on EMT-6 tumor inhibition as direct injection of boron-rich liposomes did not provide any added advantage in inhibition of EMT-6 tumor in BALB/c mice following irradiation despite having a significantly higher amount of boron in the tumor tissue. BNCT reaction in PBMCs resulted in the modification of these cells to anti-tumor phenotype. In this study, we report the immunomodulatory effects of BNCT when boron-rich compounds are delivered systemically.
Collapse
Affiliation(s)
- Aslam Ali Khan
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
- Bond Life Science Center, University of Missouri, Columbia, United States of America
- Department of Veterinary Pathobiology, University of Missouri, Columbia, United States of America
| | - Charlie Maitz
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Cai Quanyu
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Fred Hawthorne
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| |
Collapse
|
6
|
Horiguchi H, Nakamura T, Kumada H, Yanagie H, Suzuki M, Sagawa H. Investigation of irradiation conditions for recurrent breast cancer in JRR-4. Appl Radiat Isot 2011; 69:1882-4. [DOI: 10.1016/j.apradiso.2011.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
7
|
Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion. Appl Radiat Isot 2011; 69:1854-7. [DOI: 10.1016/j.apradiso.2011.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
|