1
|
Laferriere-Holloway TS, Rios A, Lu Y, Okoro CC, van Dam RM. A rapid and systematic approach for the optimization of radio thin-layer chromatography resolution. J Chromatogr A 2023; 1687:463656. [PMID: 36463649 PMCID: PMC9894532 DOI: 10.1016/j.chroma.2022.463656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Radiopharmaceutical analysis is limited by conventional methods. Radio-HPLC may be inaccurate for some compounds (e.g., 18F-radiopharmaceuticals) due to radionuclide sequester. Radio-TLC is simpler, faster, and detects all species but has limited resolution. Imaging-based readout of TLC plates (e.g., using Cerenkov luminescence imaging) can improve readout resolution, but the underlying chromatographic separation efficiency may be insufficient to resolve chemically similar species such as product and precursor-derived impurities. This study applies a systematic mobile phase optimization method, PRISMA, to improve radio-TLC resolution. The PRISMA method optimizes the mobile phase by selecting the correct solvent, optimizing solvent polarity, and optimizing composition. Without prior knowledge of impurities and by simply observing the separation resolution between a radiopharmaceutical and its nearest radioactive or non-radioactive impurities (observed via UV imaging) for different mobile phases, the PRISMA method enabled the development of high-resolution separation conditions for a wide range of 18F-radiopharmaceuticals ( [18F]PBR-06, [18F]FEPPA, [18F]Fallypride, [18F]FPEB, and [18F]FDOPA). Each optimization required a single batch of crude radiopharmaceutical and a few hours. Interestingly, the optimized TLC method provided greater accuracy (compared to other published TLC methods) in determining the product abundance of one radiopharmaceutical studied in more depth ( [18F]Fallypride) and was capable of resolving a comparable number of species as isocratic radio-HPLC. We used the PRISMA-optimized mobile phase for [18F]FPEB in combination with multi-lane radio-TLC techniques to evaluate reaction performance during high-throughput synthesis optimization of [18F]FPEB. The PRISMA methodology, in combination with high-resolution radio-TLC readout, enables a rapid and systematic approach to achieving high-resolution and accurate analysis of radiopharmaceuticals without the need for radio-HPLC.
Collapse
Affiliation(s)
- Travis S Laferriere-Holloway
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| | - Alejandra Rios
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Yingqing Lu
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Chelsea C Okoro
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Waśniowski P, Czuczejko J, Chuchra M, Wędrowski M, Marciniak D, Sobiak S, Małkowski B. Automatic Production of [ 18F]F-DOPA Using the Raytest SynChrom R&D Module. Pharmaceuticals (Basel) 2022; 16:ph16010010. [PMID: 36678506 PMCID: PMC9865388 DOI: 10.3390/ph16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
[18F]F-DOPA is widely used in PET diagnostics. Diseases diagnosed with this tracer are schizophrenia, Parkinson's disease, gliomas, neuroendocrine tumors, pheochromocytomas, and pancreatic adenocarcinoma. It should be noted that the [18F]F-DOPA tracer has been known for over 30 years. However, the methods of radiosynthesis applied in the past did not allow its clinical use due to low efficiency and purity. Currently, in the market, one encounters different types of radiosynthesis using the fluorine 18F isotope and variants of the same method. The synthesis and its modifications were carried out using a Raytest Synchrom R&D module. The synthesis consists of the following steps: (a) binding of the fluoride anion 18F- on an anion exchange column; (b) elution with TBAHCO3-; (c) nucleophilic fluorination to the ABX 1336 precursor; (d) purification of the intermediate product on the C18ec column; (e) Baeyer-Villiger oxidation; (f) hydrolysis; and (gfinal purification of the crude product on a semipreparative column. The nucleophilic synthesis of [18F]F-DOPA was successfully performed in 120 min, using the ABX 1336 precursor on the Raytest SynChrom R&D module, with a radiochemical yield (RCY) of 15%, radiochemical purity (RCP) ≥ 97%, and enantiomeric purity (ee) ≥ 96%.
Collapse
Affiliation(s)
- Paweł Waśniowski
- Department of Inorganic and Analytical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-374-3781
| | - Jolanta Czuczejko
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Psychiatry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Michał Chuchra
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
| | - Mateusz Wędrowski
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Dawid Marciniak
- Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Stanisław Sobiak
- Department of Inorganic and Analytical Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| | - Bogdan Małkowski
- Nuclear Medicine Department, Oncology Centre Professor Franciszek Łukaszczyk Memorial, dr I. Romanowskiej 2 Street, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13-15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
3
|
Andersen VL, Soerensen MA, Dam JH, Langkjaer N, Petersen H, Bender DA, Fugloe D, Huynh THV. GMP production of 6-[ 18F]Fluoro-L-DOPA for PET/CT imaging by different synthetic routes: a three center experience. EJNMMI Radiopharm Chem 2021; 6:21. [PMID: 34117961 PMCID: PMC8197687 DOI: 10.1186/s41181-021-00135-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The radiofluorinated levodopa analogue 6-[18F]F-L-DOPA (3,4-dihydroxy-6-18F-L-phenylalanine) is a commonly employed radiotracer for PET/CT imaging of multiple oncological and neurological indications. An unusually large number of different radiosyntheses have been published to the point where two different Ph. Eur. monographs exist depending on whether the chemistry relies on electrophilic or nucleophilic radiosubstitution of appropriate chemical precursors. For new PET imaging sites wishing to adopt [18F]FDOPA into clinical practice, selecting the appropriate production process may be difficult and dependent on the clinical needs of the site. METHODS Data from four years of [18F]FDOPA production at three different clinical sites are collected and compared. These three sites, Aarhus University Hospital (AUH), Odense University Hospital (OUH), and Herlev University Hospital (HUH), produce the radiotracer by different radiosynthetic routes with AUH adopting an electrophilic strategy, while OUH and HUH employ two different nucleophilic approaches. Production failure rates, radiochemical yields, and molar activities are compared across sites and time. Additionally, the clinical use of the radiotracer over the time period considered at the different sites are presented and discussed. RESULTS The electrophilic substitution route suffers from being demanding in terms of cyclotron operation and maintenance. This challenge, however, was found to be compensated by a production failure rate significantly below that of both nucleophilic approaches; a result of simpler chemistry. The five-step nucleophilic approach employed at HUH produces superior radiochemical yields compared to the three-step approach adopted at OUH but suffers from the need for more comprehensive synthesis equipment given the multi-step nature of the procedure, including HPLC purification. While the procedure at OUH furnishes the lowest radiochemical yield of the synthetic routes considered, it produces the highest molar activity. This is of importance across the clinical applications of the tracer discussed here, including dopamine synthesis in striatum of subjects with schizophrenia and congenital hyperinsulinism in infants. CONCLUSION For most sites either of the two nucleophilic substitution strategies should be favored. However, which of the two will depend on whether a given site wishes to optimize the radiochemical yield or the ease of the use.
Collapse
Affiliation(s)
- Valdemar L Andersen
- Department of Nuclear Medicine, Copenhagen University Hospital Herlev and Gentofte, Borgmester Ib Juuls vej 31, DK-2730, Herlev, Denmark
| | - Mikkel A Soerensen
- Department of Nuclear Medicine, Copenhagen University Hospital Herlev and Gentofte, Borgmester Ib Juuls vej 31, DK-2730, Herlev, Denmark
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Niels Langkjaer
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dirk Andreas Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Dan Fugloe
- Department of Nuclear Medicine, Copenhagen University Hospital Herlev and Gentofte, Borgmester Ib Juuls vej 31, DK-2730, Herlev, Denmark
| | - Tri Hien Viet Huynh
- Department of Nuclear Medicine, Copenhagen University Hospital Herlev and Gentofte, Borgmester Ib Juuls vej 31, DK-2730, Herlev, Denmark.
| |
Collapse
|
4
|
N‐
Alkyl 3‐aminobut‐2‐enenitrile as a Non‐radioactive Side Product in Nucleophilic
18
F‐Fluorination. ChemistrySelect 2021. [DOI: 10.1002/slct.202100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|