1
|
Gao Y, Wan P, Jin T, Hu H, Liu L, Niu G. Direct Fast-Neutron Detection by 2D Perovskite Semiconductor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301530. [PMID: 37282767 DOI: 10.1002/smll.202301530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Fast-neutrons play a critical role in a range of applications, including medical imaging, therapy, and nondestructive inspection. However, direct detecting fast-neutrons by semiconductors has proven to be challenging due to their weak interaction with most matter and the requirement of high carrier mobility-lifetime (µτ) product for efficient charge collection. Herein, a novel approach is presented to direct fast-neutron detection using 2D Dion-Jacobson perovskite semiconductor BDAPbBr4 . This material features a high fast-neutron caption cross-section, good electrical stability, high resistivity, and, most importantly, a record-high µτ product of 3.3 × 10-4 cm2 V-1 , outperforming most reported fast-neutron detection semiconductors. As a result, BDAPbBr4 detector exhibited good response to fast-neutrons, not only achieving fast-neutron energy spectra in counting mode, but also obtaining linear and fast response in integration mode. This work provides a paradigm-shifting strategy for designing materials that efficiently detect fast-neutrons and paves the way toward exciting applications in fast-neutron imaging and therapy.
Collapse
Affiliation(s)
- Yuting Gao
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Pengying Wan
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tong Jin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Hu
- Hubei Jiufengshan Laboratory, 9 Jiulonghu Street, Wuhan, Hubei, 430074, China
| | - Linyue Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Gulidov I, Koryakin S, Fatkhudinov T, Gordon K. External Beam Fast Neutron Therapy: Russian Clinical Experience and Prospects for Further Development. Int J Radiat Oncol Biol Phys 2023; 115:821-827. [PMID: 36822785 DOI: 10.1016/j.ijrobp.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 02/25/2023]
Affiliation(s)
- Igor Gulidov
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Sergey Koryakin
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Timur Fatkhudinov
- Federal State Autonomous Educational Institution of Higher Education ''People's Friendship University of Russia'', Medical Institution, Moscow, Russia
| | - Konstantin Gordon
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia; Federal State Autonomous Educational Institution of Higher Education ''People's Friendship University of Russia'', Medical Institution, Moscow, Russia.
| |
Collapse
|
3
|
Kiseleva V, Gordon K, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life (Basel) 2022; 12:2071. [PMID: 36556436 PMCID: PMC9785772 DOI: 10.3390/life12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Particle therapy is a developing area of radiotherapy, mostly involving the use of protons, neutrons and carbon ions for cancer treatment. The reduction of side effects on healthy tissues in the peritumoral area is an important advantage of particle therapy. In this review, we analyze state-of-the-art particle therapy, as compared to conventional photon therapy, to identify clinical benefits and specify the mechanisms of action on tumor cells. Systematization of published data on particle therapy confirms its successful application in a wide range of cancers and reveals a variety of biological effects which manifest at the molecular level and produce the particle therapy-specific molecular signatures. Given the rapid progress in the field, the use of particle therapy holds great promise for the near future.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, 249031 Obninsk, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
4
|
Gordon K, Gulidov I, Fatkhudinov T, Koryakin S, Kaprin A. Fast and Furious: Fast Neutron Therapy in Cancer Treatment. Int J Part Ther 2022; 9:59-69. [PMID: 36060415 PMCID: PMC9415749 DOI: 10.14338/ijpt-22-00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Fast neutron therapy has been used for decades. In conjunction with recent advances in photonic techniques, fast neutrons are no longer of much oncologic interest, which is not unequivocally positive, given their undoubted therapeutic value. This mini-review recalls the history of medical research on fast neutrons, considers their physical and radiobiological properties alongside their benefits for cancer treatment, and discusses their place in modern radiation oncology.
Collapse
Affiliation(s)
- Konstantin Gordon
- Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
- A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Igor Gulidov
- A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Timur Fatkhudinov
- Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
| | - Sergey Koryakin
- A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- Federal State Autonomous Educational Institution of Higher Education “People's Friendship University of Russia,” Medical Institution, Moscow, Russia
- A. Tsyb Medical Radiological Research Center—branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| |
Collapse
|
5
|
Chen Y, Feng J, Liu J, Zhou H, Luo H, Xue C, Gao W. Effects of neutron radiation on Nrf2-regulated antioxidant defense systems in rat lens. Exp Ther Med 2021; 21:334. [PMID: 33732307 PMCID: PMC7903385 DOI: 10.3892/etm.2021.9765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that ionizing radiation (IR)-induced cataract may be associated with oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the antioxidant defense system against oxidative stress. The present study aimed to investigate the effects of different doses of neutron radiation on the Nrf2-reegulated antioxidant defense system in rat lens and assess the status of oxidative stress. A total of 24 SD rats were randomly divided into the following four groups: i) Control group; iis) 0.4 Sv group; iii) 1.2 Sv group; and iv) 3.6 Sv group. The rats were sacrificed 7 days after radiation and lenses were dissected for histological, biochemical (malondialdehyde, glutathione and superoxide dismutase) and western blot (Nrf2, glutamate-cysteine ligase catalytic subunit and heme oxygenase 1) analyses. The morphological features of the lenses remained intact in the 0.4 Sv, 1.2 Sv and control groups, whilst the lenses in the 3.6 Sv group exhibited injuries. Results from the TUNEL assay demonstrated apparent apoptosis in lens epithelial cells following 3.6 Sv neutron radiation whereas sparse apoptosis was observed following 0.4 Sv and 1.2 Sv radiation. Malondialdehyde levels were reduced in the 0.4 Sv and 1.2 Sv groups but increased in the 3.6 Sv group, compared with those in the control group. Conversely, glutathione expression and the activity of superoxide dismutase were higher in the 0.4 Sv and 1.2 Sv groups, but lower in the 3.6 Sv group, compared with those in the control group. In addition, the total and nuclear protein levels of Nrf2 were increased following neutron radiation compared with those in the control group, though the Nrf2 protein levels decreased in the 3.6 Sv group compared with those in the 1.2 Sv group. The levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase 1, downstream antioxidant enzymes of Nrf2, demonstrated the same profile as that in Nrf2. Taken together, the results of the present study suggest that neutron radiation affects Nrf2-regulated antioxidant systems in a two-stage process. Namely, the induction phase for low-dose radiation and regression phase for high-dose radiation. Therefore, it was hypothesized that activation and enhancement of the Nrf2-regulated antioxidant system may be useful in preventing or delaying IR-induced cataract, which may be extended even for other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jundong Feng
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Jingyu Liu
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hao Zhou
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Huiyao Luo
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Chunyan Xue
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Weiping Gao
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|