1
|
Teichman EM, Hu J, Lin HY, Fisher-Foye RL, Blando A, Hu X, Kaniskan HÜ, Montgomery SE, Cai M, Parise LF, Wang J, Russo SJ, Han MH, Jin J, Morel C. Design and validation of novel brain-penetrant HCN channel inhibitors to ameliorate social stress-induced susceptible phenotype. Mol Psychiatry 2025:10.1038/s41380-025-02972-8. [PMID: 40199995 DOI: 10.1038/s41380-025-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Major Depressive Disorder (MDD) is a devastating, multifactorial disease with limited pharmacological treatment options. Patients with MDD exhibit alterations in their dopamine (DA) signaling pathways through the midbrain ventral tegmental area (VTA). A similar observation is also detected in preclinical models of stress - mice exhibit behavioral and physiological impairments following chronic social defeat stress (CSDS). Prior studies demonstrate that CSDS-susceptible mice have increased VTA DA neuronal excitability, in part driven by an upregulation in hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Inhibiting HCN channels with known inhibitors such as Cilobradine alleviates the negative behavioral effects of CSDS. Here, we aimed to identify Cilobradine analogs with improved neural tropism and inhibitory efficacy. Two compounds, MS7710 and MS7712, differing by their left-hand side moieties, have a similar, potent inhibitory effect on VTA DA Ih currents as compared to Cilobradine, and a greater inhibitory effect than Cilobradine on VTA DA firing rate. We demonstrate that MS7710 and MS7712 have superior brain/plasma concentration ratios as compared to Cilobradine. They were efficacious at inhibiting VTA DA neuron firing rate and bursting activity in CSDS-susceptible male mice at lower doses than Cilobradine, which was recapitulated in female CSDS-susceptible mice with MS7710. Finally, we define that a single intraperitoneal injection of MS7710 ameliorates CSDS-induced social interaction deficits and reward-associated cognitive inflexibility for at least two weeks in male and female mice. These findings yield a novel HCN channel inhibitor with improved neural tropism and stress-alleviating effects that could provide a basis for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Emily M Teichman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hsiao-Yun Lin
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Fisher-Foye
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Blando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Modendo Inc., 3415 Colorado Ave, Boulder, Colorado, 80303, USA
| | - Min Cai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lyonna F Parise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Wang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Brain-Body Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology; Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Carole Morel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Wang B, He T, Qiu G, Li C, Xue S, Zheng Y, Wang T, Xia Y, Yao L, Yan J, Chen Y. Altered synaptic homeostasis: a key factor in the pathophysiology of depression. Cell Biosci 2025; 15:29. [PMID: 40001206 PMCID: PMC11863845 DOI: 10.1186/s13578-025-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Depression, a widespread psychiatric disorder, is characterized by a diverse array of symptoms such as melancholic mood and anhedonia, imposing a significant burden on both society and individuals. Despite extensive research into the neurobiological foundations of depression, a complete understanding of its complex mechanisms is yet to be attained, and targeted therapeutic interventions remain under development. Synaptic homeostasis, a compensatory feedback mechanism, involves neurons adjusting synaptic strength by regulating pre- or postsynaptic processes. Recent advancements in depression research reveal a crucial association between the disorder and disruptions in synaptic homeostasis within neural regions and circuits pivotal for emotional and cognitive functions. This paper explores the mechanisms governing synaptic homeostasis in depression, focusing on the role of ion channels, the regulation of presynaptic neurotransmitter release, synaptic scaling processes, and essential signaling molecules. By mapping new pathways in the study of synaptic homeostasis as it pertains to depression, this research aims to provide valuable insights for identifying novel therapeutic targets for more effective antidepressant treatments.
Collapse
Affiliation(s)
- Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chong Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Song Xue
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Zhang J, Zhu Y, Zhang M, Yan J, Zheng Y, Yao L, Li Z, Shao Z, Chen Y. Potassium channels in depression: emerging roles and potential targets. Cell Biosci 2024; 14:136. [PMID: 39529121 PMCID: PMC11555980 DOI: 10.1186/s13578-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Potassium ion channels play a fundamental role in regulating cell membrane repolarization, modulating the frequency and shape of action potentials, and maintaining the resting membrane potential. A growing number of studies have indicated that dysfunction in potassium channels associates with the pathogenesis and treatment of depression. However, the involvement of potassium channels in the onset and treatment of depression has not been thoroughly summarized. In this review, we performed a comprehensive analysis of the association between multiple potassium channels and their roles in depression, and compiles the SNP loci of potassium channels associated with depression, as well as antidepressant drugs that target these channels. We discussed the pivotal role of potassium channels in the treatment of depression, provide valuable insights into new therapeutic targets for antidepressant treatment and critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jiahao Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ziwei Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zihan Shao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
5
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
6
|
Glasscock E. Newly Identified KCNA3 Gene Variants Put the "Excite"-ment Back in Kv1.3 Channelopathy. Epilepsy Curr 2024; 24:200-202. [PMID: 38898907 PMCID: PMC11185207 DOI: 10.1177/15357597241234244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
De Novo Variants in KCNA3 Cause Developmental and Epileptic Encephalopathy Soldovieri MV, Ambrosino P, Mosca I, Servettini I, Pietrunti F, Belperio G; KCNA3 Study Group; Syrbe S, Taglialatela M, Lemke JR. Ann Neurol . 2024;95(2):365-376. doi:10.1002/ana.26826 . PMID: 37964487 Objective: Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. Methods: Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. Results: Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from “pure” loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to “mixed” loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. Interpretation: We describe a novel association of de novo missense variants in KCNA3 with a human DEE and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects.
Collapse
Affiliation(s)
- Edward Glasscock
- Department of Biological Sciences, Southern Methodist University
| |
Collapse
|
7
|
Ryu H, Kim M, Park H, Choi HK, Chung C. Stress-induced translation of KCNB1 contributes to the enhanced synaptic transmission of the lateral habenula. Front Cell Neurosci 2023; 17:1278847. [PMID: 38193032 PMCID: PMC10773861 DOI: 10.3389/fncel.2023.1278847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 01/10/2024] Open
Abstract
The lateral habenula (LHb) is a well-established brain region involved in depressive disorders. Synaptic transmission of the LHb neurons is known to be enhanced by stress exposure; however, little is known about genetic modulators within the LHb that respond to stress. Using recently developed molecular profiling methods by phosphorylated ribosome capture, we obtained transcriptome profiles of stress responsive LHb neurons during acute physical stress. Among such genes, we found that KCNB1 (Kv2.1 channel), a delayed rectifier and voltage-gated potassium channel, exhibited increased expression following acute stress exposure. To determine the roles of KCNB1 on LHb neurons during stress, we injected short hairpin RNA (shRNA) against the kcnb1 gene to block its expression prior to stress exposure. We observed that the knockdown of KCNB1 altered the basal firing pattern of LHb neurons. Although KCNB1 blockade did not rescue despair-like behaviors in acute learned helplessness (aLH) animals, we found that KCNB1 knockdown prevented the enhancement of synaptic strength in LHb neuron after stress exposure. This study suggests that KCNB1 may contribute to shape stress responses by regulating basal firing patterns and neurotransmission intensity of LHb neurons.
Collapse
Affiliation(s)
- Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Kyoung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Park HR, Cai M, Yang EJ. Novel Psychopharmacological Herbs Relieve Behavioral Abnormalities and Hippocampal Dysfunctions in an Animal Model of Post-Traumatic Stress Disorder. Nutrients 2023; 15:3815. [PMID: 37686847 PMCID: PMC10490282 DOI: 10.3390/nu15173815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder caused by traumatic or frightening events, with intensified anxiety, fear memories, and cognitive impairment caused by a dysfunctional hippocampus. Owing to its complex phenotype, currently prescribed treatments for PTSD are limited. This study investigated the psychopharmacological effects of novel COMBINATION herbal medicines on the hippocampus of a PTSD murine model induced by combining single prolonged stress (SPS) and foot shock (FS). We designed a novel herbal formula extract (HFE) from Chaenomeles sinensis, Glycyrrhiza uralensis, and Atractylodes macrocephala. SPS+FS mice were administered HFE (500 and 1000 mg/kg) once daily for 14 days. The effects of HFE of HFE on the hippocampus were analyzed using behavioral tests, immunostaining, Golgi staining, and Western blotting. HFE alleviated anxiety-like behavior and fear response, improved short-term memory, and restored hippocampal dysfunction, including hippocampal neurogenesis alteration and aberrant migration and hyperactivation of dentate granule cells in SPS+FS mice. HFE increased phosphorylation of the Kv4.2 potassium channel, extracellular signal-regulated kinase, and cAMP response element-binding protein, which were reduced in the hippocampus of SPS+FS mice. Therefore, our study suggests HFE as a potential therapeutic drug for PTSD by improving behavioral impairment and hippocampal dysfunction and regulating Kv4.2 potassium channel-related pathways in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
9
|
Petratou D, Gjikolaj M, Kaulich E, Schafer W, Tavernarakis N. A proton-inhibited DEG/ENaC ion channel maintains neuronal ionstasis and promotes neuronal survival under stress. iScience 2023; 26:107117. [PMID: 37416472 PMCID: PMC10320524 DOI: 10.1016/j.isci.2023.107117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.
Collapse
Affiliation(s)
- Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Martha Gjikolaj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| |
Collapse
|
10
|
Woodward E, Rangel-Barajas C, Ringland A, Logrip ML, Coutellier L. Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety- and Depressive-Like Behaviors. eNeuro 2023; 10:ENEURO.0300-22.2023. [PMID: 36808099 PMCID: PMC9997696 DOI: 10.1523/eneuro.0300-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Women are twice as likely as men to experience emotional dysregulation after stress, resulting in substantially higher psychopathology for equivalent lifetime stress exposure, yet the mechanisms underlying this vulnerability remain unknown. Studies suggest changes in medial prefrontal cortex (mPFC) activity as a potential contributor. Whether maladaptive changes in inhibitory interneurons participate in this process, and whether adaptations in response to stress differ between men and women, producing sex-specific changes in emotional behaviors and mPFC activity, remained undetermined. This study examined whether unpredictable chronic mild stress (UCMS) in mice differentially alters behavior and mPFC parvalbumin (PV) interneuron activity by sex, and whether the activity of these neurons drives sex-specific behavioral changes. Four weeks of UCMS increased anxiety-like and depressive-like behaviors associated with FosB activation in mPFC PV neurons, particularly in females. After 8 weeks of UCMS, both sexes displayed these behavioral and neural changes. Chemogenetic activation of PV neurons in UCMS-exposed and nonstressed males induced significant changes in anxiety-like behaviors. Importantly, patch-clamp electrophysiology demonstrated altered excitability and basic neural properties on the same timeline as the emergence of behavioral effects: changes in females after 4 weeks and in males after 8 weeks of UCMS. These findings show, for the first time, that sex-specific changes in the excitability of prefrontal PV neurons parallel the emergence of anxiety-like behavior, revealing a potential novel mechanism underlying the enhanced vulnerability of females to stress-induced psychopathology and supporting further investigation of this neuronal population to identify new therapeutic targets for stress disorders.
Collapse
Affiliation(s)
- Emma Woodward
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Claudia Rangel-Barajas
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| | - Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laurence Coutellier
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Qiao Y, Li C, Zhang M, Zhang X, Wei L, Cao K, Zhang X, Bi H, Gao T. Effects of Tibetan medicine metacinnabar (β-HgS) combined with imipramine or sertraline on depression-like symptoms in mice. Front Pharmacol 2022; 13:971243. [PMID: 36120298 PMCID: PMC9478660 DOI: 10.3389/fphar.2022.971243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Depression is a common mood disorder that has exhibited an increased incidence rate worldwide, but the overall clinical efficacy of antidepressants remains unsatisfactory. In traditional Ayurveda and Tibetan medicines, β-HgS-containing medicines have been used to treat neurological diseases for thousands of years, and our previous study found that β-HgS ameliorated depression-like behaviors in chronic restraint stress (CRS)-treated or chronic unpredictable mild stress (CUMS)-treated mice. Hence, present study investigated the effects of β-HgS combined with the clinical first-line antidepressants, imipramine (IMI) and sertraline (SER), on depression-like symptoms in CRS- and CUMS-co-treated mice. Our results revealed that β-HgS promoted the antidepressant effect of SER on depression-like behavior in mice, and enhanced its effects on promoting glucocorticoid receptor (GR) expression and neuronal proliferation in key hippocampal subregions, as well as increasing interleukin 10 (IL-10) levels and decreasing malondialdehyde levels in the sera of stress-stimulated mice. As for IMI, β-HgS enhanced its effects on preventing atrophy and severe structural damage in the hippocampus, as well as in promoting hippocampal GR levels and neuronal proliferation and serum IL-10 and superoxide dismutase (SOD) levels. Additionally, combination therapy resulted in the increased diversity of important intestinal microbiota compared to that of monotherapy, which may help sustain the health of the digestive tract and reduce inflammation to further enhance the antidepressant effects of IMI and SER in mice.
Collapse
Affiliation(s)
- Yajun Qiao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Keshen Cao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| | - Tingting Gao
- Department of Psychiatry, The People’s Hospital of Jiangmen, Southern Medical University, Jiangmen, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Hongtao Bi, ; Lixin Wei, ; Tingting Gao,
| |
Collapse
|
12
|
Nirogi R, Abraham R, Jayarajan P, Goura V, Kallepalli R, Medapati RB, Tadiparthi J, Goyal VK, Pandey SK, Subramanian R, Petlu S, Thentu JB, Palacharla VRC, Gagginapally SR, Mohammed AR, Jasti V. Ropanicant (SUVN-911), an α4β2 nicotinic acetylcholine receptor antagonist intended for the treatment of depressive disorders: pharmacological, behavioral, and neurochemical characterization. Psychopharmacology (Berl) 2022; 239:2215-2232. [PMID: 35298691 DOI: 10.1007/s00213-022-06108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Ropanicant (SUVN-911) (3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo (3.1.0) hexane hydrochloride) is a novel α4β2 nicotinic acetylcholine receptor (nAChR) antagonist being developed for the treatment of depressive disorders. OBJECTIVES Pharmacological and neurochemical characterization of Ropanicant to support a potential molecule for the treatment of depressive disorders. METHODS Ropanicant was assessed for antidepressant-like activity using the rat forced swimming test (FST) and differential reinforcement of low rate -72 s (DRL-72 s). Alleviation of anhedonia was assessed in chronic mild stress model using sucrose preference test. To understand the mechanism of action, serotonin levels, ionized calcium-binding adaptor molecule 1 (Iba1), and brain-derived neurotrophic factor (BDNF) were determined. The onset of antidepressant-like activity was determined using the reduction in submissive behavior assay. The effects on cognition and sexual functions were assessed using the object recognition task and sexual dysfunction assay respectively. Interaction of Ropanicant, TC-5214, and methyllycaconitine (MLA) with citalopram was investigated individually in mice FST. RESULTS Ropanicant exhibited antidepressant like properties in the FST and DRL-72 s. A significant reduction in anhedonia was observed in the sucrose preference test. Oral administration of Ropanicant produced a significant increase in serotonin and BDNF levels, with a reduction in the Iba1 activity. The onset of antidepressant like effect with Ropanicant was within a week of treatment, and was devoid of cognitive dulling and sexual dysfunction. While Ropanicant potentiated the effect of citalopram in FST, such an effect was not observed with MLA or TC-5214. CONCLUSIONS Preclinical studies with Ropanicant support the likelihood of its therapeutic utility in the treatment of depressive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Venkat Jasti
- Suven Life Sciences Ltd, Hyderabad, 500034, India
| |
Collapse
|
13
|
MacLellan A, Fureix C, Polanco A, Mason G. Can animals develop depression? An overview and assessment of ‘depression-like’ states. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Describing certain animal behaviours as ‘depression-like’ or ‘depressive’ has become common across several fields of research. These typically involve unusually low activity or unresponsiveness and/or reduced interest in pleasure (anhedonia). While the term ‘depression-like’ carefully avoids directly claiming that animals are depressed, this narrative review asks whether stronger conclusions can be legitimate, with animals developing the clinical disorder as seen in humans (cf., DSM-V/ICD-10). Here, we examine evidence from animal models of depression (especially chronically stressed rats) and animals experiencing poor welfare in conventional captive conditions (e.g., laboratory mice and production pigs in barren environments). We find troubling evidence that animals are indeed capable of experiencing clinical depression, but demonstrate that a true diagnosis has yet to be confirmed in any case. We thus highlight the importance of investigating the co-occurrence of depressive criteria and discuss the potential welfare and ethical implications of animal depression.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrea Polanco
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
14
|
First Evidence of Kv3.1b Potassium Channel Subtype Expression during Neuronal Serotonergic 1C11 Cell Line Development. Int J Mol Sci 2020; 21:ijms21197175. [PMID: 33003279 PMCID: PMC7583048 DOI: 10.3390/ijms21197175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/05/2023] Open
Abstract
Kv3.1 channel is abundantly expressed in neurons and its dysfunction causes sleep loss, neurodegenerative diseases and depression. Fluoxetine, a serotonin selective reuptake inhibitor commonly used to treat depression, acts also on Kv3.1. To define the relationship between Kv3.1 and serotonin receptors (SR) pharmacological modulation, we showed that 1C11, a serotonergic cell line, expresses different voltage gated potassium (VGK) channels subtypes in the presence (differentiated cells (1C11D)) or absence (not differentiated cells (1C11ND)) of induction. Only Kv1.2 and Kv3.1 transcripts increase even if the level of Kv3.1b transcripts is highest in 1C11D and, after fluoxetine, in 1C11ND but decreases in 1C11D. The Kv3.1 channel protein is expressed in 1C11ND and 1C11D but is enhanced by fluoxetine only in 1C11D. Whole cell measurements confirm that 1C11 cells express (VGK) currents, increasing sequentially as a function of cell development. Moreover, SR 5HT1b is highly expressed in 1C11D but fluoxetine increases the level of transcript in 1C11ND and significantly decreases it in 1C11D. Serotonin dosage shows that fluoxetine at 10 nM blocks serotonin reuptake in 1C11ND but slows down its release when cells are differentiated through a decrease of 5HT1b receptors density. We provide the first experimental evidence that 1C11 expresses Kv3.1b, which confirms its major role during differentiation. Cells respond to the fluoxetine effect by upregulating Kv3.1b expression. On the other hand, the possible relationship between the fluoxetine effect on the kinetics of 5HT1b differentiation and Kv3.1bexpression, would suggest the Kv3.1b channel as a target of an antidepressant drug as well as it was suggested for 5HT1b.
Collapse
|
15
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
16
|
Francis-Oliveira J, Shieh IC, Vilar Higa GS, Barbosa MA, De Pasquale R. Maternal separation induces changes in TREK-1 and 5HT 1A expression in brain areas involved in the stress response in a sex-dependent way. Behav Brain Res 2020; 396:112909. [PMID: 32949645 DOI: 10.1016/j.bbr.2020.112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022]
Abstract
Depression is a prevalent disease in modern society, and has been linked to stressful events at early ages. Women are more susceptible to depression, and the neural basis for this are still under investigation. Serotonin is known to be involved in depression, and a decrease in 5HT1A expression is observed on temporal and cortical areas in both men and women with depression. As knockout animals for TREK-1 are resilient to depression, this channel has emerged as a new potential pharmacological target for depression treatment. In this study, maternal separation (MS) was used to emulate early-life stress, and evaluate behaviour, as well as TREK-1 and 5HT1A expression in the brain using immunohistochemistry. In juvenile females, 5HT1A reduction coupled to increased TREK-1 in the dentate gyrus (DG) was associated with behavioural despair, as well as increased TREK-1 expression in basolateral amygdala (BLA) and prelimbic cortex (PL). In juvenile males, MS induced an increase in 5HT1A in the BLA, and in TREK-1 in the PL, while no behavioural despair was observed. Anhedonia and anxiety-like behaviour were not induced by MS. We conclude stress-induced increase in TREK-1 in PL and GD is associated to depression, while 5HT1A changes coupled to TREK-1 changes may be necessary to induce depression, with females being more vulnerable to MS effects than males. Thus, TREK-1 and 5HT1A may be potential pharmacological targets for antidepressants development.
Collapse
Affiliation(s)
- J Francis-Oliveira
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil.
| | - I C Shieh
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - G S Vilar Higa
- Neurogenetics Laboratory, Mathematics Computation Cognition Center, Rua Arcturus 03, 09606-070, São Bernardo do Campo, SP, Brazil
| | - M A Barbosa
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - R De Pasquale
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Wang W, Yin H, Feng N, Wang L, Wang X. Inhibitory effects of antidepressant fluoxetine on cloned Kv2.1 potassium channel expressed in HEK293 cells. Eur J Pharmacol 2020; 878:173097. [PMID: 32278853 DOI: 10.1016/j.ejphar.2020.173097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/15/2022]
Abstract
It is well demonstrated that antidepressant fluoxetine has significant inhibitory effects on voltage-gated potassium channels. So far, the concise regulation of fluoxetine on Kv2.1, the predominant delayed rectifier potassium channel subtype in the central nervous system, are rarely reported. Here patch-clamp recording was used to investigate the inhibitory effects of fluoxetine on Kv2.1 potassium channels stably expressed in HEK293 cells. The results showed fluoxetine dose-dependently suppressed Kv2.1 currents with an IC50 of 51.3 μM. At the test potential positive to +50 mV, fluoxetine 50 μM voltage-dependently suppressed Kv2.1 currents with an electrical distance δ of 0.28. Moreover, fluoxetine 50 μM did not affect the activation process of Kv2.1, but reduced the decay time constant τinact and obviously accelerated the inactivation process of Kv2.1 and left-shifted the half-maximal inactivation potential of Kv2.1 potassium channel by 9.8 mV. Fluoxetine 50 μM notably delayed the recovery process of Kv2.1 from inactivation with increased time constants. In addition, fluoxetine 50 μM use-dependently inhibited Kv2.1 currents at different frequencies. In conclusion, the inhibition of Kv2.1 by fluoxetine was concentration-dependent, voltage-dependent and use-dependent. The accelerated steady-state inactivation of Kv2.1 channels induced by fluoxetine might be ascribed to the delay of the recovery process of Kv2.1.
Collapse
Affiliation(s)
- Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Luo T, Tian H, Song H, Zhao J, Liya A, Fang Y, Mou J, Li Z, Chaoketu S. Possible Involvement of Tissue Plasminogen Activator/Brain-Derived Neurotrophic Factor Pathway in Anti-Depressant Effects of Electroacupuncture in Chronic Unpredictable Mild Stress-Induced Depression in Rats. Front Psychiatry 2020; 11:63. [PMID: 32153441 PMCID: PMC7044269 DOI: 10.3389/fpsyt.2020.00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Using a rat model of chronic unpredictable mild stress (CUMS), to investigate the effects of electroacupuncture (EA) on the tissue plasminogen activator (tPA)/brain-derived neurotrophic factor (BDNF) pathway. METHODS Sixty male Sprague-Dawley rats were randomly divided into four groups: normal, model, fluoxetine (fluox), or EA. Experimental groups were subjected to 28 d of CUMS modeling. One hour after CUMS, the fluox and EA groups were treated with fluox and a 20 min EA intervention, respectively. Depressive-like behaviors were assessed by open field and sucrose preference tests. After the rats were sacrificed, brains were dissected and processed using hematoxylin and eosin (HE) staining to observe changes in the morphology and quantity of neurons in the hippocampal cornu ammonis 3 area. Western blot and real-time polymerase chain reaction (PCR) demonstrated the effects of EA on the tPA/BDNF pathway-related molecules in the hippocampi and raphe nuclei. RESULTS Compared to the model group, the number of horizontal and vertical movements and the percentage of sucrose consumption in the EA groups were significantly increased (P < 0.01). Compared to the model group, HE staining showed that the hippocampal neurons in the EA and fluox groups were arranged neatly, with rich layers and complete cell structures. The Western blot and real-time PCR showed that the levels of tPA, BDNF, tropomyosin receptor kinase B, and BDNF micro RNA (mRNA) in the hippocampi of the EA group were higher than in the model group (P < 0.01, P < 0.01, P < 0.05, P < 0.01, respectively). The content of p75NTR, proBDNF, and tPA mRNA in the hippocampi of the EA group displayed no significant differences compared to the model group. The tPA mRNA content in the raphe nuclei of the EA group was higher than in the model group (P < 0.01), and the BDNF content in the raphe nuclei was lower than in the model group (P < 0.05). There were no significant differences in tPA and BDNF mRNA between the EA and model groups. CONCLUSION EA may reverse depressive-like behaviors in CUMS, which may be related to the tPA/BDNF pathway in the hippocampus.
Collapse
Affiliation(s)
- Tong Luo
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongtao Song
- Department of Traditional Chinese Medicine, Inner Mongolia People's Hospital, Hohhot, China
| | - Jun Zhao
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ai Liya
- Graduate School, Inner Mongolia Medical University, Hohhot, China
| | - Yumin Fang
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Junhui Mou
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- Department of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Saiyin Chaoketu
- Department of Wu-Liao and Rehabilitation, Inner Mongolia International Mongolian Hospital, Hohhot, China
| |
Collapse
|
19
|
Kim A, Jung HG, Kim YE, Kim SC, Park JY, Lee SG, Hwang EM. The Knockdown of TREK-1 in Hippocampal Neurons Attenuate Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Int J Mol Sci 2019; 20:ijms20235902. [PMID: 31771312 PMCID: PMC6929152 DOI: 10.3390/ijms20235902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
TWIK-related potassium channel-1 (TREK-1) is broadly expressed in the brain and involved in diverse brain diseases, such as seizures, ischemia, and depression. However, the cell type-specific roles of TREK-1 in the brain are largely unknown. Here, we generated a Cre-dependent TREK-1 knockdown (Cd-TREK-1 KD) transgenic mouse containing a gene cassette for Cre-dependent TREK-1 short hairpin ribonucleic acid to regulate the cell type-specific TREK-1 expression. We confirmed the knockdown of TREK-1 by injecting adeno-associated virus (AAV) expressing Cre into the hippocampus of the mice. To study the role of hippocampal neuronal TREK-1 in a lipopolysaccharide (LPS)-induced depression model, we injected AAV-hSyn-BFP (nCTL group) or AAV-hSyn-BFP-Cre (nCre group) virus into the hippocampus of Cd-TREK-1 KD mice. Interestingly, the immobility in the tail suspension test after LPS treatment did not change in the nCre group. Additionally, some neurotrophic factors (BDNF, VEGF, and IGF-1) significantly increased more in the nCre group compared to the nCTL group after LPS treatment, but there was no difference in the expression of their receptors. Therefore, our data suggest that TREK-1 in the hippocampal neurons has antidepressant effects, and that Cd-TREK-1 KD mice are a valuable tool to reveal the cell type-specific roles of TREK-1 in the brain.
Collapse
Affiliation(s)
- Ajung Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Gug Jung
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Yeong-Eun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (E.M.H.)
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- Correspondence: (S.-G.L.); (E.M.H.)
| |
Collapse
|
20
|
Song C, Orlandi C, Sutton LP, Martemyanov KA. The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J Biol Chem 2019; 294:13145-13157. [PMID: 31311860 DOI: 10.1074/jbc.ra119.007533] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458.
| |
Collapse
|
21
|
Djillani A, Mazella J, Heurteaux C, Borsotto M. Role of TREK-1 in Health and Disease, Focus on the Central Nervous System. Front Pharmacol 2019; 10:379. [PMID: 31031627 PMCID: PMC6470294 DOI: 10.3389/fphar.2019.00379] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023] Open
Abstract
TREK-1 is the most studied background K2P channel. Its main role is to control cell excitability and maintain the membrane potential below the threshold of depolarization. TREK-1 is multi-regulated by a variety of physical and chemical stimuli which makes it a very promising and challenging target in the treatment of several pathologies. It is mainly expressed in the brain but also in heart, smooth muscle cells, endocrine pancreas, and prostate. In the nervous system, TREK-1 is involved in many physiological and pathological processes such as depression, neuroprotection, pain, and anesthesia. These properties explain why many laboratories and pharmaceutical companies have been focusing their research on screening and developing highly efficient modulators of TREK-1 channels. In this review, we summarize the different roles of TREK-1 that have been investigated so far in attempt to characterize pharmacological tools and new molecules to modulate cellular functions controlled by TREK-1.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
22
|
Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2018; 396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Bojana Mićić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; University of Belgrade, Faculty of Biology, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia. http://www.vinca.rs
| |
Collapse
|
23
|
Todorović N, Filipović D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-α. Pharmacol Biochem Behav 2017; 163:57-65. [DOI: 10.1016/j.pbb.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
|
24
|
Bezine M, Debbabi M, Nury T, Ben-Khalifa R, Samadi M, Cherkaoui-Malki M, Vejux A, Raas Q, de Sèze J, Moreau T, El-Ayeb M, Lizard G. Evidence of K+ homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24:0) in 158N murine oligodendrocytes. Chem Phys Lipids 2017; 207:135-150. [DOI: 10.1016/j.chemphyslip.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
|
25
|
Buran İ, Etem EÖ, Tektemur A, Elyas H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett 2017; 656:51-57. [PMID: 28716528 DOI: 10.1016/j.neulet.2017.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Depression is a common mental disorder characterized by the mood of deep sadness. Recent studies have demonstrated that microRNAs and ion channels have significant roles in the etiopathogenesis of depression. Therefore, we investigated the effects of the TREK1 ion channel inhibitor anandamide and the TRPC3/6 inhibitor norgestimate on microRNA expression and antidepressant effect in the mouse chronic mild stress (CMS) model of depression. Male BALB/c mice were divided into groups as control, CMS, CMS+sertraline, CMS+anandamide, CMS+sertraline+anandamide, CMS+norgestimate and CMS+sertraline+norgestimate. Forced swim test (FST) and Sucrose Preference Test (SPT) were utilized to assess depression levels. Anandamide and norgestimate were administered subcutaneously (5mg/kg/day), and sertraline was applied intraperitoneally (10mg/kg/day) for two days during FST. miRNA and ion channel gene expression levels in the prefrontal cortex were assessed with qRT-PCR. qRT-PCR results demonstrated that there was a significant increase in miR-9-5p, miR-128-1-5p, and miR-382-5p, and a significant decrease in miR-16-5p, miR-129-5p, and miR-219a-5p in the CMS group compared with the control group. Generally, anandamide and norgestimate significantly increased all miRNA expression. It was also determined that anandamide and norgestimate had an antidepressant action in FST when used alone and especially when used in conjunction with sertraline. Based on the study results, it could be argued that an increase in miR-9-5p and miR-128-1-5p, consistent with the literature, could play significant roles in the etiopathogenesis of depression. The antidepressant action of anandamide and norgesimate in FST showed for the first time that these inhibitors could be used as in conjuction with sertraline in depression treatment.
Collapse
Affiliation(s)
- İlay Buran
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ebru Önalan Etem
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ahmet Tektemur
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Halit Elyas
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| |
Collapse
|
26
|
Prefrontal cortical glutathione-dependent defense and proinflammatory mediators in chronically isolated rats: Modulation by fluoxetine or clozapine. Neuroscience 2017; 355:49-60. [PMID: 28499974 DOI: 10.1016/j.neuroscience.2017.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/24/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022]
Abstract
Chronic psychosocial stress modulates brain antioxidant systems and causes neuroinflammation that plays a role in the pathophysiology of depression. Although the antidepressant fluoxetine (FLX) represents the first-line treatment for depression and the atypical antipsychotic clozapine (CLZ) is considered as a second-line treatment for psychotic disorders, the downstream mechanisms of action of these treatments, beyond serotonergic or dopaminergic signaling, remain elusive. We examined behavioral changes, glutathione (GSH)-dependent defense and levels of proinflammatory mediators in the prefrontal cortex (PFC) of adult male Wistar rats exposed to 21days of chronic social isolation (CSIS). We also tested the ability of FLX (15mg/kg/day) or CLZ (20mg/kg/day), applied during CSIS, to prevent stress-induced changes. CSIS caused depressive- and anxiety-like behaviors, compromised GSH-dependent defense, and induced nuclear factor-kappa B (NF-κB) activation with a concomitant increase in cytosolic levels of proinflammatory mediators cyclooxigenase-2, interleukin-1beta and tumor necrosis factor-alpha in the PFC. NF-κB activation and proinflammatory response in the PFC were not found in CSIS rats treated with FLX or CLZ. In contrast, only FLX preserved GSH content in CSIS rats. CLZ not only failed to protect against CSIS-induced GSH depletion, but it diminished its levels when applied to non-stressed rats. In conclusion, prefrontal cortical GSH depletion and the proinflammatory response underlying depressive- and anxiety-like states induced by CSIS were prevented by FLX. The protective effect of CLZ, which was equally effective as FLX on the behavioral level, was limited to proinflammatory components. Hence, different mechanisms underlie the protective effects of these two drugs in CSIS rats.
Collapse
|
27
|
Antidepressant-Like Effect of Lipid Extract of Channa striatus in Chronic Unpredictable Mild Stress Model of Depression in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2986090. [PMID: 28074100 PMCID: PMC5203926 DOI: 10.1155/2016/2986090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/16/2016] [Indexed: 01/18/2023]
Abstract
This study evaluated the antidepressant-like effect of lipid extract of C. striatus in chronic unpredictable mild stress (CUMS) model of depression in male rats and its mechanism of action. The animals were subjected to CUMS for six weeks by using variety of stressors. At the end of CUMS protocol, animals were subjected to forced swimming test (FST) and open field test followed by biochemical assay. The CUMS protocol produced depressive-like behavior in rats by decreasing the body weight, decreasing the sucrose preference, and increasing the duration of immobility in FST. The CUMS protocol increased plasma corticosterone and decreased hippocampal and prefrontal cortex levels of monoamines (serotonin, noradrenaline, and dopamine) and brain-derived neurotrophic factor. Further, the CUMS protocol increased interleukin-6 (in hippocampus and prefrontal cortex) and nuclear factor-kappa B (in prefrontal cortex but not in hippocampus). The lipid extract of C. striatus (125, 250, and 500 mg/kg) significantly (p < 0.05) reversed all the above parameters in rats subjected to CUMS, thus exhibiting antidepressant-like effect. The mechanism was found to be mediated through decrease in plasma corticosterone, increase in serotonin levels in prefrontal cortex, increase in dopamine and noradrenaline levels in hippocampus and prefrontal cortex, increase in BDNF in hippocampus and prefrontal cortex, and decrease in IL-6 and NF-κB in prefrontal cortex.
Collapse
|
28
|
Over-expressed human TREK-1 inhibits CHO cell proliferation via inhibiting PKA and p38 MAPK pathways and subsequently inducing G1 arrest. Acta Pharmacol Sin 2016; 37:1190-8. [PMID: 27397543 DOI: 10.1038/aps.2016.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
AIM Recent studies have shown that the two-pore-domain potassium channel TREK-1 is involved in the proliferation of neural stem cells, astrocytes and human osteoblasts. In this study, we investigated how TREK-1 affected the proliferation of Chinese hamster ovary (CHO) cells in vitro. METHODS A CHO cell line stably expressing hTREK-1 (CHO/hTREK-1 cells) was generated. TREK-1 channel currents in the cells were recorded using whole-cell voltage-clamp recording. The cell cycle distribution was assessed using flow cytometry analysis. The expression of major signaling proteins involved was detected with Western blotting. RESULTS CHO/hTREK-1 cells had a high level of TREK-1 expression, reached up to 320%±16% compared to the control cells. Application of arachidonic acid (10 μmol/L), chloroform (1 mmol/L) or etomidate (10 μmol/L) substantially increased TREK-1 channel currents in CHO/hTREK-1 cells. Overexpression of TREK-1 caused CHO cells arresting at the G1 phase, and significantly decreased the expression of cyclin D1. The TREK-1 inhibitor l-butylphthalide (1-100 μmol/L) dose-dependently attenuated TREK-1-induced G1 phase cell arrest. Moreover, overexpression of TREK-1 significantly decreased the phosphorylation of Akt (S473), glycogen synthase kinase-3β (S9) and cAMP response element-binding protein (CREB, S133), enhanced the phosphorylation of p38 (T180/Y182), but did not alter the phosphorylation and expression of signal transducer and activator of transcription 3 (STAT3). CONCLUSION TREK-1 overexpression suppresses CHO cell proliferation by inhibiting the activity of PKA and p38/MAPK signaling pathways and subsequently inducing G1 phase cell arrest.
Collapse
|