1
|
Prema V, Meena A, Ramalakshmi N. A Computational Study of Phenothiazine Derivatives as Acetylcholinesterase Inhibitors Targeting Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2025; 25:68-82. [PMID: 38757327 DOI: 10.2174/0118715249300784240430110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder that affects learning, memory and behavioral turbulence in elderly patients. Acetylcholinesterase (AChE) inhibitors act as anti-Alzheimer's agents. Phenothiazine derivatives are considered momentous anti-Alzheimer's agents because of their AChE inhibitory activity. The elevated levels and increased expression of this protein have been associated with Alzheimer's disease. Coumarin-fused phenothiazines have emerged as significant anti-Alzheimer's agents due to their notable receptor inhibitory activity. OBJECTIVE Some unique phenothiazine analogs were designed, and computational studies were conducted to explore their inhibitory activity against the AChE enzyme (PDB id: 4EY7) by using the Schrodinger suite-2019-4. METHODS Docking studies were conducted by using the Glide module; binding free energies were calculated by means of the Prime MM-GBSA module, and Molecular dynamics (MD) simulation was performed by using the Desmond module of the Schrodinger suite. Glide scores were used to find out the binding affinity of the ligands with the target 4EY7. RESULTS The compounds exhibited enhanced hydrophobic interactions and formed hydrogen bonds, effectively impeding Acetylcholinesterase. The Glide scores for the compounds ranged from -13.4237 to -8.43439, surpassing the standard (Donepezil) with a score of -16.9898. Interestingly, a positive value was obtained for the MM-GBSA binding of the potent inhibitor. To gain insights into the dynamic behavior of the protein A8, molecular dynamics (MD) simulations were employed. CONCLUSION Based on the results, the study concludes that phenothiazine derivatives show promise as acetylcholinesterase inhibitors. Compounds with notable Glide scores are poised to exhibit significant anti-Alzheimer's activity, suggesting their potential therapeutic efficacy. Further in vitro and in vivo investigations are warranted to validate and explore the therapeutic potentials of these compounds.
Collapse
Affiliation(s)
- V Prema
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - A Meena
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - N Ramalakshmi
- Department of Pharmaceutical Chemistry, C. L. Baid Metha College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Vediappan P, Arumugam M, Natarajan R. In-silico Design, ADMET Screening, Prime MM-GBSA Binding Free Energy Calculation and MD Simulation of Some Novel Phenothiazines as 5HT 6R Antagonists Targeting Alzheimer's Disease. Curr Comput Aided Drug Des 2025; 21:487-502. [PMID: 38204222 DOI: 10.2174/0115734099282836231212064925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Alzheimer's disease is a type of dementia that affects neuronal function, leading to a decline in cognitive functions. Serotonin-6 (5HT6) receptors are implicated in the etiology of neurological diseases. 5HT6 receptor antagonists act as anti-dementia agents. PDB ID 7YS6 represents a membrane protein, and amplification and overexpression of this protein are associated with Alzheimer's disease. Coumarin-fused phenothiazines are significant anti-Alzheimer's agents due to their inhibitory activity on the Serotonin- 6 receptor. OBJECTIVES Numerous previously unreported Coumarin-substituted Phenothiazines [A2 to A50] were designed using In-silico methods to evaluate their 5HT6 receptor antagonistic activity. Molecular modeling techniques were employed to study the ligands [A2 to A50] in interaction with the Serotonin-6 receptor (PDB ID: 7YS6) using Schrödinger Suite 2019-4. METHODS Molecular modeling studies of the designed ligands [A2 to A50] were conducted using the Glide module. In-silico ADMET screening was performed using the QikProp module, and binding free energy calculations were carried out using the Prime MM-GBSA module within the Schrödinger Suite. The binding affinity of the designed ligands [A2 to A50] towards 5HT6 receptors was determined based on Glide scores. Subsequently, ligand A31 underwent a 100 ns molecular dynamics simulation using the Desmond module of Schrödinger Suite 2020-1, which is based in New York, NY. RESULTS The majority of the designed ligands exhibited strong hydrogen bonding interactions and hydrophobic associations with the serotonin-6 receptor, which hinder its activity. These ligands achieved remarkable Glide scores within the range of -4.2859 to -7.7128, in comparison to reference standards such as Idalopirdine (-7.78149), Intepirdine (-5.20103), Latrepirdine (-5.54853), and the co-crystallized ligand (-7.02889). In-silico ADMET properties for these ligands fell within the recommended values for drug-likeness. It is worth noting that the MMGBSA binding free energy of the most potent inhibitor was positive, indicating a strong binding interaction. Additionally, the dynamic behavior of the protein (7YS6)-ligand (A31) complex was studied by subjecting ligand A31 to a 100 ns molecular dynamics simulation. CONCLUSION The results of this study reveal strong evidence supporting the potential of coumarin- substituted phenothiazine derivatives as effective Serotonin-6 receptor antagonists. Ligands [A2 to A50], which exhibited noteworthy Glide scores, hold promise for significant anti- Alzheimer activity. Further in-vitro and in-vivo investigations are warranted to explore and confirm their therapeutic potential.
Collapse
Affiliation(s)
- Prema Vediappan
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - Meena Arumugam
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C. L. Baid Metha College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Iqbal A, Alam MT, Khan A, Siddiqui T, Ali A. Inhibition of protein misfolding and aggregation by steroidal quinoxalin-2(1H)-one and their molecular docking studies. Int J Biol Macromol 2024; 269:132020. [PMID: 38704061 DOI: 10.1016/j.ijbiomac.2024.132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.
Collapse
Affiliation(s)
- Arfeen Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Asna Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
4
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Cheepurupalli L, Diaz A, Gopal AC, Rathore SS, Ramakrishnan V, Ramakrishnan J. In vitro and in silico screening of Klebsiella pneumoniae new Delhi metallo-β-lactamase-1 inhibitors from endophytic Streptomyces spp. J Biomol Struct Dyn 2022; 40:13593-13605. [PMID: 34657563 DOI: 10.1080/07391102.2021.1990132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increase in drug resistance over the last two decades is a big threat in health care settings. More importantly, the dissemination of carbapenem-resistant Enterobacteriaceae is the major threat to public health with an increase in morbidity and mortality. β-lactamase is known to confer enteric bacteria with nearly complete resistance to all β-lactam antibiotics including the late-generation carbapenems. The commercially available β-lactamase inhibitors, clavulanic acid, sulbactam, and tazobactam are being met with an increasing number of resistant phenotypes and are ineffective against pathogens harbouring New Delhi metallo-β-lactamase (NDM-1). Inhibition of New Delhi metallo-β-lactamase-1 activity is one potential way to treat metallo β-lactamase (MBL) producing multi drug resistant (MDR) pathogen. The present study focused on screening of Klebsiella pneumoniae New Delhi metallo-β-lactamase-1 (BLIs) from endophytic Streptomyces spp. using in vitro and in silico methods. The study identified three potential inhibitors of New Delhi metallo-β-lactamase-1, namely dodecanoic acid, dl-alanyl-l-leucine and phenyl propanedioic acid. These molecules were found to bind to other MBLs namely, IMP-1 and VIM-2. To the best of our knowledge, this is the first kind of study reporting the binding mode of these molecules with New Delhi metallo-β-lactamase-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalitha Cheepurupalli
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Aathithya Diaz
- Computational Molecular Biophysics Laboratory (CMBL), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Adithya Conjeevaram Gopal
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Al-Fayez N, Elsawy H, Mansour MA, Akbar Ali M, Elghamry I. Synthesis, Anticancer, Antioxidant, Anti-Inflammatory, Antimicrobial Activities, Molecular Docking, and DFT Studies of Sultams Derived from Saccharin. Molecules 2022; 27:7104. [PMID: 36296696 PMCID: PMC9611055 DOI: 10.3390/molecules27207104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
A series of N-substituted saccharins namely 2-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl) acetonitrile (2) and (alkyl 1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl) acetate (3a-g) were synthesized, in moderate to excellent yields, from commercially available starting materials by two different approaches and their chemical structures were characterized by spectroscopic techniques (1H-NMR, 13C-NMR, IR, and MS). All the synthesized compounds were evaluated for their anti-inflammatory toward IL-6 and TNF-α, antioxidant, as well as their anticancer activities against hepatic cancer cells. In addition, their anti-fungal and antibacterial activities against both Gram-positive and Gram-negative bacteria were tested. All the tested compounds have exhibited excellent (3a, d, e) to moderate anti-inflammatory activity. Additionally, esters (3b, f) and nitrile (2) showed excellent antioxidant activity. Furthermore, ester 3f, with isopropyl ester, exhibited the highest cytotoxic activity compared to the other esters. Moreover, all compounds were evaluated as selective inhibitors of the human COX-1 enzyme using molecular docking by calculating the free energy of binding, inhibition constant, and other parameters to find out the binding affinity. The molecular study showed that esters (3d, f) and nitrile (2) revealed the highest binding affinities, hence enhancing the inhibition activity with the active site of the COX-1 enzyme. All the tested compounds have more negative Gibbs free, electrostatic, and total intermolecular energies than the standard inhibitor ASA. These results indicate that, all the tested sultams are potent anti-inflammatory drugs as compared to standard inhibitors. Finally, the chemical properties and the quantum factors of synthesized sultams were calculated based on density functional theory (DFT) to predict reactivity, and then correlated with the experimental data. Ester 3f showed the lowest ionization potential and lowest energy gap (Egap = 7.5691 eV), which was correlated with its cytotoxic activity. Furthermore, the spatial electron distribution of HOMO, LUMO were computed and it clearly indicates the electron donation ability of all the tested compounds.
Collapse
Affiliation(s)
- Nourah Al-Fayez
- Department of Chemistry, College of Science Al Hufuf, King Faisal University, Al Hufuf P.O. Box 380, Saudi Arabia
| | - Hany Elsawy
- Department of Chemistry, College of Science Al Hufuf, King Faisal University, Al Hufuf P.O. Box 380, Saudi Arabia
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohammed A. Mansour
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | - Mohamad Akbar Ali
- Department of Chemistry, College of Science Al Hufuf, King Faisal University, Al Hufuf P.O. Box 380, Saudi Arabia
- Department of Chemistry, College of Art and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ibrahim Elghamry
- Department of Chemistry, College of Science Al Hufuf, King Faisal University, Al Hufuf P.O. Box 380, Saudi Arabia
| |
Collapse
|
7
|
Sharma K. Chromone Scaffolds in the Treatment of Alzheimer's and Parkinson's Disease: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202200540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kamlesh Sharma
- Department of Chemistry Faculty of Science Shree Guru Gobind Singh Tricentenary University Gurugram 122505 Haryana INDIA
| |
Collapse
|
8
|
Qamar M, Sultanat, Shafiullah, Khan AU, Ali A, Farhat N. One pot facile synthesis of flavanoidal oxadiazinanones: In vitro antibacterial activity, docking and MD simulation using DNA gyrase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Benny AT, Radhakrishnan EK. Advances in the site-selective C-5, C-3 and C-2 functionalization of chromones via sp 2 C-H activation. RSC Adv 2022; 12:3343-3358. [PMID: 35425362 PMCID: PMC8979368 DOI: 10.1039/d1ra08214k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 02/02/2023] Open
Abstract
In this work, site-selective C-H activation at C-5, C-3 and C-2 positions of chromones for the introduction of structural diversity to the chromone scaffold was studied. The keto group of the chromone moiety acts as the directing group for the selective functionalization of chromones at the C-5 position. Furthermore, the C-H functionalization at the electron-rich C-3 position of the chromone can be achieved using electrophilic coupling partners. The C-H functionalization at the C-2 position can be possible using nucleophilic coupling partners. The direct functionalization methods provide a better pathway for the generation of C-5, C-3 and C-2-substituted chromones with good atom economy than that of classical pre-functionalized reaction protocols.
Collapse
|
10
|
Fuloria S, Yusri MAA, Sekar M, Gan SH, Rani NNIM, Lum PT, Ravi S, Subramaniyan V, Azad AK, Jeyabalan S, Wu YS, Meenakshi DU, Sathasivam KV, Fuloria NK. Genistein: A Potential Natural Lead Molecule for New Drug Design and Development for Treating Memory Impairment. Molecules 2022; 27:265. [PMID: 35011497 PMCID: PMC8746870 DOI: 10.3390/molecules27010265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Genistein is a naturally occurring polyphenolic molecule in the isoflavones group which is well known for its neuroprotection. In this review, we summarize the efficacy of genistein in attenuating the effects of memory impairment (MI) in animals. Scopus, PubMed, and Web of Science databases were used to find the relevant articles and discuss the effects of genistein in the brain, including its pharmacokinetics, bioavailability, behavioral effects, and some of the potential mechanisms of action on memory in several animal models. The results of the preclinical studies highly suggested that genistein is highly effective in enhancing the cognitive performance of the MI animal models, specifically in the memory domain, including spatial, recognition, retention, and reference memories, through its ability to reduce oxidative stress and attenuate neuroinflammation. This review also highlighted challenges and opportunities to improve the drug delivery of genistein for treating MI. Along with that, the possible structural modifications and derivatives of genistein to improve its physicochemical and drug-likeness properties are also discussed. The outcomes of the review proved that genistein can enhance the cognitive performance and ameliorate MI in different preclinical studies, thus indicating its potential as a natural lead for the design and development of a novel neuroprotective drug.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia; (S.F.); (A.K.A.)
| | - Muhamad Azrul Amir Yusri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (M.A.A.Y.); (M.S.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (M.A.A.Y.); (M.S.); (P.T.L.)
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (M.A.A.Y.); (M.S.); (P.T.L.)
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom Selangor, Shah Alam 42610, Malaysia;
| | - Abul Kalam Azad
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia; (S.F.); (A.K.A.)
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai 600116, India;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | | | | | | |
Collapse
|
11
|
Benny AT, Arikkatt SD, Vazhappilly CG, Kannadasan S, Thomas R, Leelabaiamma MSN, Radhakrishnan EK, Shanmugam P. Chromone a Privileged Scaffold in Drug Discovery: Developments on the Synthesis and Bioactivity. Mini Rev Med Chem 2021; 22:1030-1063. [PMID: 34819000 DOI: 10.2174/1389557521666211124141859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized "as privileged scaffolds in compounds" in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer's agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Sonia D Arikkatt
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014. India
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah. United Arab Emirates
| | | | - Renjan Thomas
- Division of Molecular Pathology, Strand Lifesciences, HCG Hospital, Bangalore - 560 0270. India
| | | | | | - Ponnusamy Shanmugam
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600020. India
| |
Collapse
|
12
|
Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10030367. [PMID: 33671015 PMCID: PMC7997428 DOI: 10.3390/antiox10030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The complex network of malfunctioning pathways occurring in the pathogenesis of neurodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compromising of organism’s natural defense systems and subsequently, in the instauration of deleterious OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts in drug discovery programs, the identification process of new therapeutic agents able to counteract the relentless progress of neurodegenerative processes has produced low or no effective therapies. Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occurring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim of this review is to provide an overview of the main pharmacological features of most promising nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.
Collapse
Affiliation(s)
- Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
- Correspondence:
| |
Collapse
|
13
|
Development of genistein-O-alkylamines derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Chem 2021; 107:104602. [PMID: 33453647 DOI: 10.1016/j.bioorg.2020.104602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/01/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
The multi-target-directed ligands have been regarded as the promising multifunctional agents for the treatment of Alzheimer's disease (AD). Based on our previous work, a series of genistein-O-alkylamines derivatives was developed to further explore the structure-activity-relationship. The results showed that compound 7d indicated reversible and highly selective hAChE inhibitory activity with IC50 value of 0.53 μM. Compound 7d also displayed good antioxidant activity (ORAC = 1.1 eq.), promising neuroprotective effect and selective metal chelation property. Moreover, compound 7d significantly inhibited self-induced, hAChE-induced and Cu2+-induced Aβ aggregation with 39.8%, 42.1% and 74.1%, respectively, and disaggregated Cu2+-induced Aβ1-42 aggregation (67.3%). In addition, compound 7d was a potential autophagy inducer and improved the levels of GPX4 protein. Furthermore, compound 7d presented good blood-brain-barrier permeability in vitro. More importantly, compound 7d did not show any acute toxicity at doses of up to 1000 mg/kg and presented good precognitive effect on scopolamine-induced memory impairment. Therefore, compound 7d was a promising multifunctional agent for the development of anti-AD drugs.
Collapse
|
14
|
Analysis of cancer in histological images: employing an approach based on genetic algorithm. Pattern Anal Appl 2020. [DOI: 10.1007/s10044-020-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhang Z, Fan F, Luo W, Zhao Y, Wang C. Molecular Dynamics Revealing a Detour-Forward Release Mechanism of Tacrine: Implication for the Specific Binding Characteristics in Butyrylcholinesterase. Front Chem 2020; 8:730. [PMID: 33195011 PMCID: PMC7477934 DOI: 10.3389/fchem.2020.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/14/2020] [Indexed: 01/29/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a non-specific enzyme with clinical pharmacological and toxicological significance, which was a renewed interest as therapeutic target in Alzheimer's disease (AD) nowadays. Here, all-atom molecular dynamics simulations of butyrylcholinesterase with tacrine complex were designed to characterize inhibitor binding modes, strengths, and the hydrogen-bond dependent non-covalent release mechanism. Four possible release channels were identified, and the most favorable channel was determined by random acceleration molecular dynamics molecular dynamics (RAMD MD) simulations. The thermodynamic and dynamic properties as well as the corresponding Detour-forward delivery mechanism were determined according to the classical molecular dynamics (MD) simulations accompanied with umbrella sampling. The free energy barrier of the tacrine release process for the most beneficial pathway is about 10.95 kcal/mol, which is related to the non-covalent interactions from the surrounding residues, revealing the specific binding characteristics in the active site. The residues including Asp70, Ser79, Trp82, Gly116, Thr120, Tyr332, and His438 were identified to play major roles in the stabilization of tacrine in the pocket of BChE, where hydrogen bonding and π-π interactions are significant factors. Tyr332 and Asp70, which act as gate keepers, play crucial roles in the substrate delivery. The present results provide a basic understanding for the ligand transport mechanism depending on the BChE enzymatic environment, which is useful for the design of BChE inhibitors in the future.
Collapse
Affiliation(s)
- Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
16
|
Luo W, Lv JW, Wang T, Zhang ZY, Guo HY, Song ZY, Wang CJ, Ma J, Chen YP. Synthesis, in vitro and in vivo biological evaluation of novel graveolinine derivatives as potential anti-Alzheimer agents. Bioorg Med Chem 2020; 28:115190. [PMID: 31744779 DOI: 10.1016/j.bmc.2019.115190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
A novel series of graveolinine derivatives were synthesized and evaluated as potential anti-Alzheimer agents. Compound 5f exhibited the best inhibitory activity for acetylcholinesterase (AChE) and had surprisingly potent inhibitory activity for butyrylcholinesterase (BuChE), with IC50 values of 0.72 μM and 0.16 μM, respectively. The results from Lineweaver-Burk plot and molecular modeling study indicated non-competitive inhibition of AChE by compound 5f. In addition, these derivatives showed potent self-induced β-amyloid (Aβ) aggregation inhibition. Moreover, 5f didn't show obvious toxicity against PC12 and HepG2 cells at 50 μM. Finally, in vivo studies confirmed that 5f significantly ameliorates the cognitive performances of scopolamine-treated ICR mice. Therefore, these graveolinine derivatives should be thoroughly and systematically studied for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jian-Wu Lv
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Ting Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhi-Yang Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Hui-Yan Guo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhi-Yi Song
- Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475004, People's Republic of China
| | - Chao-Jie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jing Ma
- Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475004, People's Republic of China.
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530001, People's Republic of China.
| |
Collapse
|
17
|
Waris S, Habib S, Khan S, Kausar T, Naeem SM, Siddiqui SA, Moinuddin, Ali A. Molecular docking explores heightened immunogenicity and structural dynamics of acetaldehyde human immunoglobulin G adduct. IUBMB Life 2019; 71:1522-1536. [PMID: 31185142 DOI: 10.1002/iub.2078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Acetaldehyde is a metabolite of ethanol, an important constituent of tobacco pyrolysis and the aldehydic product of lipid peroxidation. Acetaldehyde induced toxicity is mainly due to its binding to cellular macromolecules resulting in the formation of stable adducts accompanied by oxidative stress. The aim of this study was to characterize structural and immunological alterations in human immunoglobulin G (IgG) modified with acetaldehyde in the presence of sodium borohydride, a reducing agent. The IgG modifications were studied by various physicochemical techniques such as fluorescence and CD spectroscopy, free amino group estimation, 2,2-azobis 2-amidinopropane (AAPH) induced red blood cell hemolysis as well as transmission electron microscopy. Molecular docking was also employed to predict the preferential binding of acetaldehyde to IgG. The immunogenicity of native and acetaldehyde-modified IgG was investigated by immunizing female New Zealand white rabbits using native and modified IgG as antigens. Binding specificity and cross reactivity of rabbit antibodies was screened by competitive inhibition ELISA and band shift assays. The modification of human IgG with acetaldehyde results in quenching of the fluorescence of tyrosine residues, decrease in free amino group content, a change in the antioxidant property as well as formation of cross-linked structures in human IgG. Molecular docking reveals strong binding of IgG to acetaldehyde. Moreover, acetaldehyde modified IgG induced high titer antibodies (>1:12800) in the experimental animals. The antibodies exhibited high specificity in competitive binding assay toward acetaldehyde modified human IgG. The results indicate that acetaldehyde induces alterations in secondary and tertiary structure of IgG molecule that leads to formation of neo-epitopes on IgG that enhances its immunogenicity.
Collapse
Affiliation(s)
- Sana Waris
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shifa Khan
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Naeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid A Siddiqui
- Department of Radiotherapy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
18
|
Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur J Med Chem 2019; 183:111695. [PMID: 31541868 DOI: 10.1016/j.ejmech.2019.111695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
As for complex brain diseases involved with multiple pathogenic factors, it is extremely difficult to achieve curative effect by acting on a single target. Multi-approach drugs provide a promising prospect in the treatment of complex brain diseases and have been attracting more and more interest. Enlightened by synergetic effect of combination in traditional herb medicines, forty-two novel cinnamic acid derivatives were designed and synthesized by introducing capsaicin and/or ligustrazine moieties to enhance biological activities in both neurological function and neurovascular protection. Elevated levels of cell viability on human brain microvascular endothelium cell line (HBMEC-2) and human neuroblastoma cell line (SH-SY5Y) against free radical injury were observed in most of compounds. Among them, compound 14a exhibited the most potent activities with a significant EC50 value of 3.26 ± 0.16 μM (HBMEC-2) and 2.41 ± 0.10 μM (SH-SY5Y). Subsequently, the results of morphological staining and flow cytometry analysis experiments on both cell lines showed that 14a had the potential to block apoptosis, maintain cell morphological integrity and protect physiological function of mitochondria. Moreover, 14a displayed specific angiogenesis effect in the chick chorioallantoic membrane (CAM) assay; and the results of RT-PCR suggested that the mechanism for angiogenesis effect was associated with the enhancement of the expressions of VEGFR2 mRNA in chick embryo. Preliminary structure-activity relationship was analyzed. The above evidences suggested that conjunctures gained by combining active ingredients in traditional herb medicines deserved further study and might provide references in discovering dual-effective lead compounds for brain diseases.
Collapse
|
19
|
Wu C, Tu YB, Li Z, Li YF. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg Chem 2019; 88:102949. [DOI: 10.1016/j.bioorg.2019.102949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023]
|
20
|
Silva CFM, Pinto DCGA, Silva AMS. Chromones: privileged scaffolds for the production of multi-target-directed-ligand agents for the treatment of Alzheimer’s disease. Expert Opin Drug Discov 2018; 13:1141-1151. [DOI: 10.1080/17460441.2018.1543267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - Artur M. S. Silva
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Hong C, Guo HY, Chen S, Lv JW, Zhang X, Yang YC, Huang K, Zhang YJ, Tian ZY, Luo W, Chen YP. Synthesis and biological evaluation of genistein-O
-alkylamine derivatives as potential multifunctional anti-Alzheimer agents. Chem Biol Drug Des 2018; 93:188-200. [DOI: 10.1111/cbdd.13414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Chen Hong
- Huaihe Hospital; Henan University; Kaifeng China
| | - Hui-yan Guo
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Shuai Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Jian-wu Lv
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Xin Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Ya-cheng Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Kang Huang
- Pharmaceutical College; Henan University; Kaifeng China
| | - Yi-juan Zhang
- Pharmaceutical College; Henan University; Kaifeng China
| | - Zhi-yong Tian
- Pharmaceutical College; Henan University; Kaifeng China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng China
| | - Yi-ping Chen
- School of Pharmaceutical Sciences; Guangxi University of Chinese Medicine; Nanning China
| |
Collapse
|
22
|
Study of the enantioselectivity and recognition mechanism of chiral dual system based on chondroitin sulfate D in capillary electrophoresis. Anal Bioanal Chem 2018; 410:5889-5898. [PMID: 30043111 DOI: 10.1007/s00216-018-1208-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/15/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants, and polymers have been involved in dual-selector systems for enantioseparation of a series of compounds by capillary electrophoresis (CE). In this paper, chondroitin sulfate D-based dual-selector system (CSD/CM-β-CD) was firstly established and investigated for the enantioseparation of six basic racemic drugs in capillary electrophoresis. Compared to the single-selector systems, synergistic effect and significantly improved separations for all tested analytes were observed in CSD/CM-β-CD system. The effect of several parameters, such as buffer pH, chiral selector concentration, and applied voltage, was systematically optimized. Meanwhile, to investigate the possible chiral recognition mechanisms in CSD/CM-β-CD synergistic system, we tried to apply the molecular docking method to simulate the host-guest binding procedures of the polysaccharide-based dual system for the first time. The difference in binding free energy was found to correspond to the chiral selectivity factor. The existence of CSD-CM-β-CD complex may give rise to a higher discriminatory ability against the enantiomers, indicating the synergistic effect in CSD/CM-β-CD system. Graphical abstract ᅟ.
Collapse
|
23
|
Muguruma Y, Tsutsui H, Noda T, Akatsu H, Inoue K. Widely targeted metabolomics of Alzheimer's disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:53-66. [PMID: 29852382 DOI: 10.1016/j.jchromb.2018.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
Confirmed biomarkers of postmortem cerebrospinal fluid (pCSF) are used to differentiate between Alzheimer's disease (AD) patients and healthy seniors with high diagnostic accuracy. However, the extent to which the performance of specific metabolic profiling facilitates reliable estimations of the concentrations of the different pCSF biomarkers and their ratios remains unclear. The interpretation of the lower levels of molecules of metabolic profiling and their concentration ratios in pCSF related to brain disorders could facilitate an unchallenging detection of peripheral biomarkers of AD stages and other dementia types. In this study, we proposed the use of widely targeted metabolomics for pCSF metabolic profiling using 9-fluorenylmethyl chloroformate- (FMOC) derivatized ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to evaluate the diversity of 97 amine-mediated metabolic patterns and pathways from confirmed diagnosis based on AD brain pathology. Our results identified the metabolites that contributed toward and mutually influenced the principal component analysis plot with integrated analytes. Furthermore, the AD group showed a significant variation in several analyte concentration levels compared to those of control subjects. These trends of the concentration levels expressed by the amine metabolic pathways indicated the decreased activity of polyamine and tryptophan-kynurenine (Trp-Kyn) metabolisms. Moreover, increased metabolites such as methionine sulfoxide, 3-methoxy-anthranilate, cadaverine, guanine, and histamine were observed by widely targeted metabolomics of pCSF from the AD subjects. According to their metabolic pathway analysis using FMOC-derivatized UHPLC-MS/MS assay, we supposed that the involvement of polyamine and Trp-Kyn metabolisms was observed in the pCSF samples.
Collapse
Affiliation(s)
- Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Haruhito Tsutsui
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; ONO Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takumi Noda
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; ONO Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Hiroyasu Akatsu
- Department of Medicine for Aging Place, Community Health Care/Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-0001, Japan; Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Toyohashi 441-8124, Japan
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
24
|
A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer's disease. Eur J Med Chem 2018; 152:570-589. [PMID: 29763806 DOI: 10.1016/j.ejmech.2018.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurodegenerative disease. The target enzymes inhibition including cholinesterase, beta-secretase, monoamine oxidase and inhibition of amyloid-β aggregation as well as oxidative stress and metal chelation play an important role in the pathogenesis of AD. Chroman-4-one scaffold with benzo-γ-pyrone network is a privileged structure in organic synthesis and drug design. A large number of research has been carried out on modified naturally occurring chromanone scaffolds and/or synthesized new analogues, to obtain effective drugs for AD management. The present review summarizes aspects related to the multi-target-directed ligands (MTDLs) strategy in enzyme targets modulation performed with natural and synthesized chroman-4-one-based structures to look at their potential in the management of multifactorial Alzheimer's disease.
Collapse
|
25
|
Chen J, Tao LX, Xiao W, Ji SS, Wang JR, Li XW, Zhang HY, Guo YW. Design, synthesis and biological evaluation of novel chiral oxazino-indoles as potential and selective neuroprotective agents against Aβ25–35-induced neuronal damage. Bioorg Med Chem Lett 2016; 26:3765-9. [DOI: 10.1016/j.bmcl.2016.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/21/2022]
|
26
|
Shidore M, Machhi J, Shingala K, Murumkar P, Sharma MK, Agrawal N, Tripathi A, Parikh Z, Pillai P, Yadav MR. Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer’s Agents: Synthesis and Biological Evaluation. J Med Chem 2016; 59:5823-46. [DOI: 10.1021/acs.jmedchem.6b00426] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahesh Shidore
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Jatin Machhi
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Kaushik Shingala
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Prashant Murumkar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mayank Kumar Sharma
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Neetesh Agrawal
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Ashutosh Tripathi
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Zalak Parikh
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Prakash Pillai
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Mange Ram Yadav
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| |
Collapse
|