1
|
Li J, Wang Y, Zheng X, Chen L, Sun Q, Peng D, Le T. Novel CoOOH-based fluorescent aptasensor for rapid and sensitive detection of sulfamethazine in environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123290. [PMID: 37643510 DOI: 10.1016/j.saa.2023.123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Sulfamethazine (SMZ) has been widely used in animal husbandry and exposed to water and soil environments, posing potential threat to human health and ecological environment. Hence, we designed a CoOOH-based aptasensor, the fluorescence resonance energy transfer between FAM-labeled aptamer and CoOOH was used to sensitively and selectively detect SMZ in water and soil environments. Molecular docking and molecular dynamics simulations were used to predict binding mechanisms of SMZ and aptamer. Under optimized conditions, the aptasensor exhibited high sensitivity and selectivity with a linear range of 5-40 ng/mL and a limit of detection of 2.43 ng/mL. The recoveries of the aptasensor were 84.6-115.8% in water and soil samples with relative standard deviations below 9%, and the detection results were highly consistent with high-performance liquid chromatography. Therefore, this developed aptasensor was a reliable tool and could be applied to monitoring of SMZ in environmental samples.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yarong Wang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Lingling Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Dtection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Hu Z, Wang J, Jin L, Duan Y, Zhang X, Sun J, Zhou W, Li G. Isolation and Structural Characterization of Two Polysaccharides from Dracocephalum moldavica and Their Anti-Complementary Activity. Chem Biodivers 2022; 19:e202200294. [PMID: 35594039 DOI: 10.1002/cbdv.202200294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022]
Abstract
The two novel polysaccharides, DMP-1 and DMP-2, with molecular weights of 4.1553×105 kDa and 1.9764×105 kDa, respectively, were isolated from Dracocephalum moldavica. The structural characterization indicated that DMP-1 and DMP-2 shared a similar backbone consisting of →5)-Araf-(1→, Manp-(1→, Glcp-(1→, →2)-Manp-(1→, →6)-Glcp-(1→ and →3,6)-Galp-(1→ with a different molar ratios and triple-helix structures with α- and β-type glycosidic bonds. The anti-complementary activity evaluation showed that DMP-1 and DMP-2 had strong complement inhibition through the classical pathway (CP), alternative pathway (AP) and lectin pathway (LP). Mechanistic studies indicated that DMP-1 can block the activation cascade of the complement system by targeting C2, C3, C5, C9, Factor B and Factor P, and that DMP-2 inhibited complement activation by blocking C2, C3, C4, C5, C9 and Factor B.
Collapse
Affiliation(s)
- Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jiaming Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Xiaohui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| |
Collapse
|
3
|
Lu Y, Jiang Y, Ling L, Zhang Y, Li H, Chen D. Beneficial effects of Houttuynia cordata polysaccharides on "two-hit" acute lung injury and endotoxic fever in rats associated with anti-complementary activities. Acta Pharm Sin B 2018; 8:218-227. [PMID: 29719782 PMCID: PMC5925397 DOI: 10.1016/j.apsb.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023] Open
Abstract
Houttuynia cordata Thunb. is a traditional herb used for clearing heat and eliminating toxins, and has also been used for the treatment of severe acute respiratory syndrome (SARS). In vitro, the crude H. cordata polysaccharides (CHCP) exhibited potent anti-complementary activity through both the classical and alternative pathways by acting on components C3 and C4 of the complement system without interfering with the coagulation system. This study was to investigate the preventive effects of CHCP on acute lung injury (ALI) induced by hemorrhagic shock plus lipopolysaccharide (LPS) instillation (two-hit) and LPS-induced fever in rats. CHCP significantly attenuated pulmonary injury in the “two-hit” ALI model by reducing pulmonary edema and protein exudation in bronchoalveolar lavage fluid (BALF). In addition, it reduced the deposit of complement activation products in the lung and improved oxidant-antioxidant imbalance. Moreover, CHCP administration inhibited fever in rats, reduced the number of leukocytes and restored serum complement levels. The inhibition on the inappropriate activation of complement system by CHCP may play an important role in its beneficial effects on inflammatory diseases. The anti-complementary polysaccharides are likely to be among the key substances for the heat-clearing function of H. cordata.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Jiang
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lijun Ling
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
- Corresponding author.
| |
Collapse
|
4
|
Abstract
The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.
Collapse
|