1
|
Li Z, Yang Y, Peng H, Li F. Hematopoietic stem cell microtransplantation: current situation and challenges. Ther Adv Hematol 2025; 16:20406207241310332. [PMID: 39758947 PMCID: PMC11694307 DOI: 10.1177/20406207241310332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) stands as a cornerstone in the treatment of hematological malignancies, recognized for its remarkable efficacy. However, the persistent challenge of graft-versus-host disease (GVHD) continues to represent a significant barrier, often being the leading cause of nonrelapse mortality after allo-HSCT. To address this limitation, hematopoietic stem cell microtransplantation (MST) has emerged as a novel therapeutic strategy that synergistically combines chemotherapy, allo-HSCT, and cellular immunotherapy. This innovative approach is designed to retain the patient's immune function, promote the establishment of microchimerism, and achieve a potent graft-versus-tumor (GVT) response, all while significantly minimizing the risk of GVHD. MST has primarily been applied in the treatment of hematological malignancies, where it has demonstrated promising outcomes, including marked improvements in complete remission rates, overall survival rates, and progression-free survival rates. Moreover, MST facilitates hematopoietic recovery, decreases the likelihood of infections, and reduces the incidence of GVHD, thus contributing to an improved quality of life for patients. A deeper and more comprehensive understanding of MST's mechanisms could enhance its clinical utility and integration into standard treatment protocols. This review aims to explore the underlying mechanisms, current clinical applications, and challenges of MST, shedding light on its potential role in advancing the management of hematological malignancies.
Collapse
Affiliation(s)
- Zhengyang Li
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanyuan Yang
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China*These authors contributed equally
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, China
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng street, Nanchang 330006, P.R. China
| |
Collapse
|
2
|
Ramzi M, Dehghani M, Hajimaghsoodi M, Golmoghaddam H, Arandi N. The impact of PD-1/PD-L1, CTLA-4, TIM-3 and LAG-3 immune checkpoint receptor expression in the development of acute graft versus host disease (aGVHD) and disease recurrence after allogeneic hematopoietic stem cell transplantation. Hum Immunol 2025; 86:111225. [PMID: 39740301 DOI: 10.1016/j.humimm.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
The immune checkpoint receptors play a crucial role in managing the transplantation outcome including development of acute graft versus host disease (aGVHD) and disease recurrence following allogeneic hematopoietic stem cell transplantation (allo-HSCT) is well established. This study aimed to investigate the expression of immune checkpoint receptors, including PD-1/PD-L1, CTLA-4, TIM-3, and LAG-3 in donors, as well as changes in their expression during the first 90 days (day 30 and day 90) post-HLA-matched allo-HSCT, concerning the development of aGVHD and disease relapse. Forty-one donor/recipient pairs were included in this study. The relative expression of immune checkpoint receptors was measured using the SYBR Green Real-Time PCR method. There was no significant relationship between the expression of PD-1/PD-L1, CTLA-4, TIM-3, and LAG-3 immune checkpoint receptors in donors and the occurrence of aGVHD and disease relapse. Additionally, alterations in the expression of these receptors during the initial 90 days post-transplantation did not correlate with aGVHD development. However, patients exhibiting elevated PD-L1 levels at day 90 had an increased risk of disease recurrence post-allo-HSCT (*P = 0.027). This study is the first to demonstrate that high PD-L1 expression in the peripheral blood at day 90 after allo-HSCT is associated with an increased rate of post-transplantation relapse.
Collapse
Affiliation(s)
- Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Golmoghaddam
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Le ML, Yang YY, Jiang MY, Han C, Guo ZR, Liu RD, Zhao ZJ, Zhou Q, Wen S, Wu Y. Discovery of novel selective phosphodiesterase‑1 inhibitors for the treatment of acute myelogenous leukemia. Bioorg Chem 2024; 144:107114. [PMID: 38224637 DOI: 10.1016/j.bioorg.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. PDE1 (Phosphodiesterase 1) is a subfamily of the PDE super-enzyme families that can hydrolyze the second messengers cAMP and cGMP simultaneously. Previous research has shown that suppressing the gene expression of PDE1 can trigger apoptosis of human leukemia cells. However, no selective PDE1 inhibitors have been used to explore whether PDE1 is a potential target for treating AML. Based on our previously reported PDE9/PDE1 dual inhibitor 11a, a series of novel pyrazolopyrimidinone derivatives were designed in this study. The lead compound 6c showed an IC50 of 7.5 nM against PDE1, excellent selectivity over other PDEs and good metabolic stability. In AML cells, compound 6c significantly inhibited the proliferation and induced apoptosis. Further experiments indicated that the apoptosis induced by 6c was through a mitochondria-dependent pathway by decreasing the ratio of Bcl-2/Bax and increasing the cleavage of caspase-3, 7, 9, and PARP. All these results suggested that PDE1 might be a novel target for AML.
Collapse
Affiliation(s)
- Mei-Ling Le
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Rong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheng-Jiong Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Gournay V, Robin M. [Allogeneic hematopoietic stem cell transplantation for myelodysplastic syndromes]. Bull Cancer 2023; 110:1168-1175. [PMID: 37516649 DOI: 10.1016/j.bulcan.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/03/2023] [Indexed: 07/31/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the treatment options for myelodysplastic syndromes (MDS). This treatment is indicated as first-line treatment for high-risk MDS according to the IPSS and R-IPSS classifications and improves overall survival and progression-free survival. However, allo-HSCT is not indicated in first intention for low-risk MDS. It can be discussed in case of cytopenias needing transfusions, poor evolution under other treatment, or in case of poor prognosis molecular anomaly. Allo-HSCT is a treatment that can be complicated by early or late toxicities (graft versus host disease, infections, chemotherapy toxicity…). The decision to do an allo-HSCT is based on the benefit/risk ratio between the risk of progression from MDS to myeloid leukemia and the risk of transplant related mortality, which increases with the patient's age and comorbidities. The indication of a cytoreductive treatment before allo-HSCT depends on the blasts count, and on the delay before the allograft. The use of reduced intensity conditioning regimen and alternative donors such as haploidentical donors, expanded the indications for allo-HSCT. Relapse remains one of the main causes of mortality after allo-HSCT. Some genetic mutations and karyotype anomalies increase the risk of post-transplant relapse. Preventive treatments for relapse are currently being studied. Treatments such as azacytidine, donor lymphocytes infusions or targeted therapies can be used, prophylactically or preemptively.
Collapse
Affiliation(s)
- Viviane Gournay
- AP-HP, université de Paris Cité, hôpital Saint-Louis, Paris, France.
| | - Marie Robin
- AP-HP, université de Paris Cité, hôpital Saint-Louis, Paris, France
| |
Collapse
|
5
|
Wang Q, Liang Z, Ren H, Dong Y, Yin Y, Wang Q, Liu W, Wang B, Han N, Li Y, Li Y. Real-world outcomes and prognostic factors among patients with acute myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation. Ann Hematol 2023; 102:3061-3074. [PMID: 37667046 DOI: 10.1007/s00277-023-05429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant lymphohematopoietic tumor that ranks among the most frequent indications for allogeneic hematopoietic stem cell transplantation (allo-HSCT). This article aims to provide a comprehensive analysis of the application of allo-HSCT for AML and identify prognostic factors to enhance future treatment effect. This retrospective study collected data from 323 patients diagnosed with AML at Peking University First Hospital who underwent allo-HSCT between September 2003 and July 2022. The annual number of transplantations has steadily increased. Our center has observed a rise in the proportion of cytogenetic high-risk and measurable residual disease (MRD) positive patients since 2013, as well as an increase in the number of haploidentical transplantations. The overall leukocyte engraftment time has decreased over the past 20 years. Furthermore, both overall survival (OS) and disease-free survival (DFS) have significantly improved, while non-relapse mortality (NRM) has significantly decreased since 2013. Multivariate analysis identified transplantation before 2013, patients in complete remission (CR) 2 or non-CR, and recipients older than 50 years as risk factors for NRM, while patients in non-CR and patients with positive MRD are risk factors for recurrence. These findings offer insights into AML treatment outcomes in China, highlighting changes in transplantation practices and the need to reduce post-transplant relapse. Effective interventions, such as MRD monitoring and risk stratification schemes, are crucial for further enhancing transplant outcomes.
Collapse
Affiliation(s)
- Qingya Wang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Qingyun Wang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Na Han
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yangliu Li
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
| |
Collapse
|
6
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-256. [PMID: 37873637 DOI: 10.52547/ibj.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. METHODS The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. RESULTS Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. CONCLUSION Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Khani-Eshratabadi M, Mousavi SH, Zarrabi M, Motallebzadeh Khanmiri J, Zeinali Bardar Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Microvesicles Could Induce Apoptosis and Autophagy in Acute Myeloid Leukemia. IRANIAN BIOMEDICAL JOURNAL 2023; 27:247-56. [PMID: 37873637 PMCID: PMC10707811 DOI: 10.61186/ibj.27.5.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 12/17/2023]
Abstract
Background Microvesicles (MV) have been identified as candidate biomarkers for treating acute myeloid leukemia (AML). This study investigated the effects of human umbilical cord-derived mesenchymal stem cell (hUCMSC)-derived MVs on apoptosis and autophagy in the KG-1 leukemic cell line. Methods The hUCMSCs were cultured and characterized by flow cytometry. MVs were isolated by ultracentrifugation, and the concentration was determined using the Bradford method. The characteristics of MVs were confirmed using transmission electron microscopy, flow cytometry, and dynamic light scattering methods. KG-1 cells were treated with the desired concentrations of MVs for 24 h. The apoptosis induction and reactive oxygen species production were evaluated using flow cytometry. RT-PCR was performed to evaluate apoptosis- and autophagy-related genes expression. Results Following tretment of KG-1 cells with 25, 50, and 100 μg/ml concentrations of MVs, the apoptosis rates were 47.85%, 47.15%, and 51.35% (p < 0.0001), and the autophagy-induced ROS levels were 73.9% (p < 0.0002), 84.8% (p < 0.0001), and 85.4% (p < 0.0001), respectively. BAX and ATG7 gene expression increased significantly at all concentrations compared to the control, and this level was higher at 50 μg/ml than that of the other concentrations. In addition, LC3 and Beclin 1 expression increased significantly in a concentration-dependen manner. Conversely, BCL2 expression decreased compared to the control. Conclusion Our findings indicate that hUCMSC-MVs could induce cell death pathways of autophagy and apoptosis in the KG-1 cell lines and exert potent antiproliferative and proapoptotic effects on KG-1 cells in vitro. Therefore, hUCMSC-MVs may be a potential approach for cancer therapy as a novel cell-to-cell communication strategy.
Collapse
Affiliation(s)
- Mohammad Khani-Eshratabadi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zeinali Bardar
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Sun L, Yang N, Chen B, Bei Y, Kang Z, Zhang C, Zhang N, Xu P, Yang W, Wei J, Ke J, Sun W, Li X, Shen P. A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy. Acta Pharm Sin B 2023; 13:3027-3042. [PMID: 37521858 PMCID: PMC10372914 DOI: 10.1016/j.apsb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Currently the main treatment of acute myeloid leukemia (AML) is chemotherapy combining hematopoietic stem cell transplantation. However, the unbearable side effect of chemotherapy and the high risk of life-threatening infections and disease relapse following hematopoietic stem cell transplantation restrict its application in clinical practice. Thus, there is an urgent need to develop alternative therapeutic tactics with significant efficacy and attenuated adverse effects. Here, we revealed that umbilical cord-derived mesenchymal stem cells (UC-MSC) efficiently induced AML cell differentiation by shuttling the neutrophil elastase (NE)-packaged extracellular vesicles (EVs) into AML cells. Interestingly, the generation and release of NE-packaged EVs could be dramatically increased by vitamin D receptor (VDR) activation in UC-MSC. Chemical activation of VDR by using its agonist 1α,25-dihydroxyvitamin D3 efficiently enhanced the pro-differentiation capacity of UC-MSC and then alleviated malignant burden in AML mouse model. Based on these discoveries, to evade the risk of hypercalcemia, we synthetized and identified sw-22, a novel non-steroidal VDR agonist, which exerted a synergistic pro-differentiation function with UC-MSC on mitigating the progress of AML. Collectively, our findings provided a non-gene editing MSC-based therapeutic regimen to overcome the differentiation blockade in AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Nanfei Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bing Chen
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Yuncheng Bei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Zisheng Kang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Peipei Xu
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Wei Yang
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210008, China
| | - Jiangqiong Ke
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
9
|
Xie JY, Wang WJ, Wang N, Dong Q, Han H, Feng YP, Yuan Y, Feng J, Chen K. A novel immune-related gene signature correlated with serum IL33 expression in acute myeloid leukemia prognosis. Am J Transl Res 2023; 15:4332-4344. [PMID: 37434810 PMCID: PMC10331686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE To identify and validate the immune-related gene signature in patients with acute myeloid leukemia (AML). METHODS Differentially expressed genes (DEGs) profiles and survival data were obtained from The Cancer Genome Atlas (TCGA), following screened immune-associated genes from the InnateDB database. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to detect functional modules, and survival analysis was performed. The least absolute shrinkage and selection operator (LASSO) regression model combined with a partial likelihood-based Cox proportional hazard regression model was applied to select prognostic genes, and the ESTIMATE algorithm was used to construct an immune score-based risk assessment model. Finally, two independent datasets from the Gene Expression Omnibus (GEO) and our clinical data were used for external validation. Moreover, a subpopulation of the immune microenvironment cells was analyzed by the CIBERSORT algorithm, and its related serum indicator was identified by the enzyme-linked immunosorbent assay (ELISA) in clinical samples. RESULTS Finally, CTSD, GNB2, CDK6, and WAS were identified as the immune-related gene signature, and the risk stratification model was validated in both the GSE12417 database and our clinical cohort. Furthermore, the fraction of activated mast cells was identified. CIBERSORT algorithm showed that these cells have a positive association with prognosis. In addition, mast cell stimulator IL-33 was markedly decreased in AML patients with poor prognoses. CONCLUSION A novel immune-related gene signature (CTSD, GNB2, CDK6 and WAS) and its associated plasma indicator (mast cells activator, IL-33) were found to have prognostic value in AML patients.
Collapse
Affiliation(s)
- Jin-Ye Xie
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Wei-Jia Wang
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
- Department of Medical Research, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Nan Wang
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Qian Dong
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Hui Han
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Yan-Pin Feng
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Yong Yuan
- Department of Cardiovascular Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
- Department of Medical Research, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| | - Juan Feng
- School of Medicine, Foshan UniversityFoshan 528225, Guangdong, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People’s HospitalZhongshan 528403, Guangdong, China
| |
Collapse
|
10
|
Feng C, Zhang T, Pan C, Kang Q, Wang L, Liu X, Shang Q, Chen S, Hu T, Wang J. Heme oxygenase-1 inhibits the cytotoxicity of natural killer cells to acute myeloid leukemia by downregulating human leukocyte antigen-C. Cytotherapy 2023:S1465-3249(23)00037-3. [PMID: 36890092 DOI: 10.1016/j.jcyt.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND AIMS Recently, immune escape has been considered as a factor leading to relapse of acute myeloid leukemia (AML). In our previous study, heme oxygenase 1 (HO-1) proved to play an essential role in the proliferation and drug resistance of AML cells. In addition, recent studies by our group have shown that HO-1 is involved in immune escape in AML. Nevertheless, the specific mechanism by which HO-1 mediates immune escape in AML remains unclear. METHODS In this study, we found that patients with AML and an overexpression of HO-1 had a high rate of recurrence. In vitro, overexpression of HO-1 attenuated the toxicity of natural killer (NK) cells to AML cells. Further study indicated that HO-1 overexpression inhibited human leukocyte antigen-C and reduced the cytotoxicity of NK cells to AML cells, leading to AML relapse. Mechanistically, HO-1 inhibited human leukocyte antigen-C expression by activating the JNK/C-Jun signaling pathway. RESULTS In AML, HO-1 inhibits cytotoxicity of NK cells by inhibiting the expression of HLA-C, thus causing immune escape of AML cells. CONCLUSIONS NK cell-mediated innate immunity is important for the fight against tumors, especially when acquired immunity is depleted and dysfunctional, and the HO-1/HLA-C axis can induce functional changes in NK cells in AML. Anti-HO-1 treatment can promote the antitumor effect of NK cells and may play an important role in the treatment of AML.
Collapse
Affiliation(s)
- Cheng Feng
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Tianzhuo Zhang
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Chengyun Pan
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Qian Kang
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Li Wang
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Xin Liu
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Qin Shang
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Siyu Chen
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Tianzhen Hu
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Clinical Medicine College of Guizhou Medical University, Guiyang, China; Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China.
| |
Collapse
|
11
|
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, Jiang L, Wu J, Zhao M. A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy. ACS NANO 2023; 17:3334-3345. [PMID: 36752654 DOI: 10.1021/acsnano.2c06313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ferroptosis is an alternative strategy to overcome chemoresistance, but effective therapeutic approaches to induce ferroptosis for acute myeloid leukemia (AML) treatment are limited. Here, we developed glutathione (GSH)-responsive cysteine polymer-based ferroptosis-inducing nanomedicine (GCFN) as an efficient ferroptosis inducer and chemotherapeutic drug nanocarrier for AML treatment. GCFN depleted intracellular GSH and inhibited glutathione peroxidase 4, a GSH-dependent hydroperoxidase, to cause lipid peroxidation and ferroptosis in AML cells. Furthermore, GCFN-loaded paclitaxel (PTX@GCFN) targeted AML cells and spared normal hematopoietic cells to limit the myeloablation side effects caused by paclitaxel. PTX@GCFN treatment extended the survival of AML mice by specifically releasing paclitaxel and simultaneously inducing ferroptosis in AML cells with restricted myeloablation and tissue damage side effects. Overall, the dual-functional GCFN acts as an effective ferroptosis inducer and a chemotherapeutic drug carrier for AML treatment.
Collapse
Affiliation(s)
- Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Hematology, People's Hospital of Zhangzi, Changzhi, Shanxi 046000,China
| | - Yabin Meng
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tong Tong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kaitao Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wenwen Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
| | - Jun Wu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
12
|
Zhao X, Wang W, Nie S, Geng L, Song K, Zhang X, Yao W, Qiang P, Sun G, Wang D, Liu H. Dynamic comparison of early immune reactions and immune cell reconstitution after umbilical cord blood transplantation and peripheral blood stem cell transplantation. Front Immunol 2023; 14:1084901. [PMID: 37114055 PMCID: PMC10126295 DOI: 10.3389/fimmu.2023.1084901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Umbilical cord blood transplantation (UCBT) and peripheral blood stem cell transplantation (PBSCT) are effective allogeneic treatments for patients with malignant and non-malignant refractory hematological diseases. However, the differences in the immune cell reconstitution and the immune reactions during initial stages post-transplantation are not well established between UCBT and PBSCT. Therefore, in this study, we analyzed the differences in the immune reactions during the early stages (days 7-100 post-transplantation) such as pre-engraftment syndrome (PES), engraftment syndrome (ES), and acute graft-versus-host disease (aGVHD) and the immune cell reconstitution between the UCBT and the PBSCT group of patients. We enrolled a cohort of patients that underwent UCBT or PBSCT and healthy controls (n=25 each) and evaluated their peripheral blood mononuclear cell (PBMC) samples and plasma cytokine (IL-10 and GM-CSF) levels using flow cytometry and ELISA, respectively. Our results showed that the incidences of early immune reactions such as PES, ES, and aGVHD were significantly higher in the UCBT group compared to the PBSCT group. Furthermore, in comparison with the PBSCT group, the UCBT group showed higher proportion and numbers of naïve CD4+ T cells, lower proportion and numbers of Tregs, higher proportion of CD8+ T cells with increased activity, and higher proportion of mature CD56dim CD16+ NK cells during the early stages post-transplantation. Moreover, the plasma levels of GM-CSF were significantly higher in the UCBT group compared to the PBSCT group in the third week after transplantation. Overall, our findings demonstrated significant differences in the post-transplantation immune cell reconstitution between the UCBT and the PBSCT group of patients. These characteristics were associated with significant differences between the UCBT and the PBSCT groups regarding the incidences of immune reactions during the early stages post transplantation.
Collapse
Affiliation(s)
- Xuxu Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenya Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shiqin Nie
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liangquan Geng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaidi Song
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyi Zhang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Yao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ping Qiang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangyu Sun
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| | - Huilan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| |
Collapse
|
13
|
Wu KH, Weng TF, Li JP, Chao YH. Antithymocyte Globulin Plus Post-Transplant Cyclophosphamide Combination as an Effective Strategy for Graft-versus-Host Disease Prevention in Haploidentical Peripheral Blood Stem Cell Transplantation for Children with High-Risk Malignancies. Pharmaceuticals (Basel) 2022; 15:1423. [PMID: 36422554 PMCID: PMC9694437 DOI: 10.3390/ph15111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Haploidentical hematopoietic stem cell transplantation using post-transplant cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis has emerged as a valid alternative transplant strategy for patients lacking a suitable HLA-matched related donor. The high risk of severe GVHD remains the major clinical challenge in this setting. The addition of antithymocyte globulin (ATG) in PTCy-based regimens for GVHD reduction in haploidentical hematopoietic stem cell transplantation is rational and was reported in adult series. However, its feasibility is unknown in pediatric patients. Here, we firstly describe our experience of 15 consecutive children with high-risk malignancies receiving haploidentical peripheral blood stem cell transplantation using ATG plus PTCy for GVHD prophylaxis. Only three patients developed grade 1-2 acute GVHD, limited to skin. No grade 3-4 acute GVHD and chronic GVHD were observed. Viral reactivations were frequently seen but manageable. Six patients relapsed, as the main cause of death in our series. None died from events related to GVHD. Our data suggest that ATG plus PTCy is an effective strategy for GVHD prevention in haploidentical peripheral blood stem cell transplantation and is feasible in children with high-risk malignancies.
Collapse
Affiliation(s)
- Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
14
|
Zhang R, Lu X, Tang LV, Wang H, Yan H, You Y, Zhong Z, Shi W, Xia L. Influence of graft composition in patients with hematological malignancies undergoing ATG-based haploidentical stem cell transplantation. Front Immunol 2022; 13:993419. [PMID: 36189288 PMCID: PMC9520486 DOI: 10.3389/fimmu.2022.993419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To determine the influence of graft composition in haplo-HSCT, we summarized the long-term consequences of 251 consecutive transplantations from haploidentical donors. For donor-recipient HLA3/6-matched setting, 125 cases used G-CSF-mobilized BM and PBSCs mixtures, while 126 cases only used G-CSF-mobilized PBSCs in HLA4/6-matched transplantation. On the one hand, we wanted to explore the effect of harvests (CD34+ cells and TNCs dosages) on transplantation outcome in the context of haplo-HSCT no matter HLA4/6 or HLA3/6-matched setting. On the other hand, for patients using G-CSF-mobilized BM and PBSCs combination in HLA3/6-matched setting, we attempted to analyze whether TNCs or CD34+ cells from G-CSF-mobilized BM or G-CSF-mobilized PBSCs play the most paramount role on transplantation prognosis. Collectively, patients with hematologic malignancies receiving G-CSF-primed BM and PBSCs harvests had comparable consequences with patients only receiving G-CSF-mobilized PBSCs. Moreover, when divided all patients averagely according to the total amount of transfused nucleated cells, 3-year TRM of the intermediate group (13.06-18.05×108/kg) was only 4.9%, which was remarkably reduced when compared to lower and higher groups with corresponding values 18.3%, 19.6% (P=0.026). The 3-year probabilities of OS and DFS of this intermediate group were 72.6% and 66.5%, which were slightly improved than the lower and higher groups. Most importantly, these data suggest that the transfused nucleated cells from G-CSF-primed BM above than 5.20×108/kg could achieve remarkably lower TRM in haplo-HSCT receiving G-CSF-mobilized BM and PBSCs harvests. These encouraging results suggested that we could improve the efficacy of haplo-HSCT by adjusting the component and relative ratio of transfused graft cells. Nevertheless, the above findings should be confirmed in a randomized prospective comparative research with adequate follow-up.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang V. Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Linghui Xia, ; Wei Shi,
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Linghui Xia, ; Wei Shi,
| |
Collapse
|
15
|
Tang Y, Zhou Z, Yan H, You Y. Case Report: Preemptive Treatment With Low-Dose PD-1 Blockade and Azacitidine for Molecular Relapsed Acute Myeloid Leukemia With RUNX1-RUNX1T1 After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:810284. [PMID: 35185899 PMCID: PMC8847388 DOI: 10.3389/fimmu.2022.810284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) patients who develop hematological relapse (HR) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) generally have dismal clinical outcomes. Measurable residual disease (MRD)-directed preemptive interventions are effective approaches to prevent disease progression and improve prognosis for molecular relapsed patients with warning signs of impending HR. In this situation, boosting the graft-vs-leukemia (GVL) effect with immune checkpoint inhibitors (ICIs) might be a promising prevention strategy, despite the potential for causing severe graft-vs-host disease (GVHD). In the present study, we reported for the first time an AML patient with RUNX1-RUNX1T1 who underwent preemptive treatment with the combined application of tislelizumab (an anti-PD-1 antibody) and azacitidine to avoid HR following allo-HSCT. On day +81, molecular relapse with MRD depicted by RUNX1-RUN1T1-positivity as well as mixed donor chimerism occurred in the patient. On day +95, with no signs of GVHD and an excellent eastern cooperative oncology group performance status (ECOG PS), the patient thus was administered with 100 mg of tislelizumab on day 1 and 100 mg of azacitidine on days 1-7. After the combination therapy, complete remission was successfully achieved with significant improvement in hematologic response, and the MRD marker RUNX1-RUNX1T1 turned negative, along with a complete donor chimerism in bone marrow. Meanwhile, the patient experienced moderate GVHD and immune-related adverse events (irAEs), successively involving the lung, liver, lower digestive tract and urinary system, which were well controlled by immunosuppressive therapies. As far as we know, this case is the first one to report the use of tislelizumab in combination with azacitidine to prevent post-transplant relapse in AML. In summary, the application of ICIs in MRD positive patients might be an attractive strategy for immune modulation in the future to reduce the incidence of HR in the post-transplant setting, but safer clinical application schedules need to be explored.
Collapse
Affiliation(s)
- Yutong Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyang Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R, Liu J. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal miR-425-5p Inhibits Acute Myeloid Leukemia Cell Proliferation, Apoptosis, Invasion and Migration by Targeting WTAP. Onco Targets Ther 2021; 14:4901-4914. [PMID: 34594112 PMCID: PMC8478487 DOI: 10.2147/ott.s286326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a predominant blood malignancy with high mortality and severe morbidity. AML is affected by microRNAs (miRNAs) loaded in exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs). MiR-425-5p has been reported to participate in different cancer models. However, the function of BM-MSCs-derived exosomal miR-425-5p in AML is unclear. Methods The expression of miR-425-5p was measured by qRT-PCR in clinical AML samples. The immunophenotype of BM-MSCs was analyzed using antibodies against CD44, CD90, and CD105. The exosome was isolated from BM-MSCs. The effect of BM-MSCs-derived exosomal miR-425-5p on AML was analyzed by CCK-8 assay, Edu assay, transwell assay, flow cytometry in AML cells. qRT-PCR, luciferase reporter gene assay and Western blot analysis were also conducted in AML cells. Results The expression levels of miR-425-5p were decreased in CD34 + CD38-AML cells from primary AML patients compared to that from the bone marrow of healthy cases, and were reduced in exosomes from AML patients compared that from healthy cases. Similarly, miR-425-5p was also down-regulated in AML cell lines compared with BM-MSCs. MiR-425-5p was able to express in exosomes from BM-MSCs. CCK-8, Edu, transwell assay and flow cytometry analysis revealed that BM-MSCs-derived exosomal miR-425-5p significantly inhibited cell viability, Edu positive cells, invasion and migration, and induced apoptosis of AML cells. Meanwhile, the expression levels of cleaved PARP and cleaved caspase3 were increased by BM-MSCs-derived exosomal miR-425-5p in cells. MiR-425-5p inhibited the expression of Wilms tumor 1-associated protein (WTAP). Moreover, overexpression of WTAP could reverse the miR-425-5p-induced inhibition effect on AML cell proliferation, apoptosis, migration and invasion. Conclusion BM-MSCs-derived exosomal miR-425-5p inhibits proliferation, invasion and migration of AML cells and induced apoptosis of AML cells by targeting WTAP. Therapeutically, BM-MSCs-derived exosomal miR-425-5p may serve as a potential target for AML therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bijay Khadka
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jieying Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Ruozhi Xiao
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| |
Collapse
|
17
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Gao H. Editorial of Special Issue on Tumor Microenvironment and Drug Delivery. Acta Pharm Sin B 2020; 10:2016-2017. [PMID: 33304776 PMCID: PMC7714967 DOI: 10.1016/j.apsb.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|