1
|
Song Y, Ren X, Yang X, Xiong J, Wang W, Tang K, Yu B. Structure-Guided Design of Pyrazolopyrimidinones as Highly Potent and Selective Allosteric SHP2 Inhibitors. J Med Chem 2025. [PMID: 40235316 DOI: 10.1021/acs.jmedchem.5c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays crucial roles in various biological processes and has become a promising target for cancer therapy. In this work, we presented the structure-guided design of new allosteric SHP2 inhibitors, leading to the identification of the pyrazolopyrimidinone derivatives TK-684 and TK-685. Both compounds were highly potent and selective allosteric SHP2 inhibitors (TK-684: SHP2WT IC50 = 2.1 nM; Ki = 0.89 nM; TK-685: SHP2WT IC50 = 1.5 nM; Ki = 0.87 nM), likely binding to the "tunnel" allosteric site of SHP2. By targeting SHP2-mediated AKT and ERK signaling pathways, TK-684 and TK-685 suppressed cell proliferation and induced apoptosis in esophageal cancer cells. Additionally, oral administration of TK-685 demonstrated good antitumor effects in the KYSE-150 xenograft mouse model, with a T/C value of 76.8%. Collectively, the pyrazolopyrimidinone derivatives represent promising lead compounds for the treatment of esophageal cancer, where SHP2 is dysregulated.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou 350122, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinbo Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Tang K, Wang S, Feng S, Yang X, Guo Y, Ren X, Bai L, Yu B, Liu HM, Song Y. Discovery of TK-642 as a highly potent, selective, orally bioavailable pyrazolopyrazine-based allosteric SHP2 inhibitor. Acta Pharm Sin B 2024; 14:3624-3642. [PMID: 39234614 PMCID: PMC11372460 DOI: 10.1016/j.apsb.2024.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 09/06/2024] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a promising therapeutic target for cancer therapy. In this work, we presented the structure-guided design of 5,6-fused bicyclic allosteric SHP2 inhibitors, leading to the identification of pyrazolopyrazine-based TK-642 as a highly potent, selective, orally bioavailable allosteric SHP2 inhibitor (SHP2WT IC50 = 2.7 nmol/L) with favorable pharmacokinetic profiles (F = 42.5%; t 1/2 = 2.47 h). Both dual inhibition biochemical assay and docking analysis indicated that TK-642 likely bound to the "tunnel" allosteric site of SHP2. TK-642 could effectively suppress cell proliferation (KYSE-520 cells IC50 = 5.73 μmol/L) and induce apoptosis in esophageal cancer cells by targeting the SHP2-mediated AKT and ERK signaling pathways. Additionally, oral administration of TK-642 also demonstrated effective anti-tumor effects in the KYSE-520 xenograft mouse model, with a T/C value of 83.69%. Collectively, TK-642 may warrant further investigation as a promising lead compound for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Linyue Bai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Kim SH, Bulos ML, Adams JA, Yun BK, Bishop AC. Single Ion Pair Is Essential for Stabilizing SHP2's Open Conformation. Biochemistry 2024; 63:273-281. [PMID: 38251939 DOI: 10.1021/acs.biochem.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Src-homology-2-domain-containing PTP-2 (SHP2) is a widely expressed signaling enzyme whose misregulation is associated with multiple human pathologies. SHP2's enzymatic activity is controlled by a conformational equilibrium between its autoinhibited ("closed") state and its activated ("open") state. Although SHP2's closed state has been extensively characterized, the putative structure of its open form has only been revealed in the context of a highly activated mutant (E76K), and no systematic studies of the biochemical determinants of SHP2's open-state stabilization have been reported. To identify amino-acid interactions that are critical for stabilizing SHP2's active state, we carried out a mutagenic study of residues that lie at potentially important interdomain interfaces of the open conformation. The open/closed equilibria of the mutants were evaluated, and we identified several interactions that contribute to the stabilization of SHP2's open state. In particular, our findings establish that an ion pair between glutamate 249 on SHP2's PTP domain and arginine 111 on an interdomain loop is the key determinant of SHP2's open-state stabilization. Mutations that disrupt the R111/E249 ion pair substantially shift SHP2's open/closed equilibrium to the closed state, even compared to wild-type SHP2's basal-state equilibrium, which strongly favors the closed state. To the best of our knowledge, the ion-pair variants uncovered in this study are the first known SHP2 mutants in which autoinhibition is augmented with respect to the wild-type protein. Such "hyperinhibited" mutants may provide useful tools for signaling studies that investigate the connections between SHP2 inhibition and the suppression of human disease progression.
Collapse
Affiliation(s)
- Sean H Kim
- Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States
| | - Maya L Bulos
- Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States
| | - Jennifer A Adams
- Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States
| | - B Koun Yun
- Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States
| | - Anthony C Bishop
- Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
5
|
Yan X, Zhang C, Gao LX, Liu MM, Yang YT, Yu LJ, Zhou YB, Milaneh S, Zhu YL, Li J, Wang WL. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur J Med Chem 2024; 265:116027. [PMID: 38128236 DOI: 10.1016/j.ejmech.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 μM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 μM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Ting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Jie Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; Higher Institute of Applied Science and Technology, Department of Pharmaceutical and Chemical Industries, Damascus, 31983, Syria
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Yang X, Xiong J, Yu B, Song Y. Emerging therapeutic approaches of SHP2-targeted modulators. Future Med Chem 2024; 16:291-294. [PMID: 38275153 DOI: 10.4155/fmc-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Tweetable abstract Monotherapy and combination therapy of SHP2 regulator for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Xiong
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Wu MY, Li ZW, Lu JH. Molecular Modulators and Receptors of Selective Autophagy: Disease Implication and Identification Strategies. Int J Biol Sci 2024; 20:751-764. [PMID: 38169614 PMCID: PMC10758101 DOI: 10.7150/ijbs.83205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/31/2023] [Indexed: 01/05/2024] Open
Abstract
Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process. Identifying these receptors and modulators and their roles is critical for understanding the machinery and physiological function of selective autophagy and providing therapeutic value for diseases. Using modern researching tools and novel screening technologies, an increasing number of selective autophagy receptors and modulators have been identified. A variety of Strategies and approaches, including protein-protein interactions (PPIs)-based identification and genome-wide screening, have been used to identify selective autophagy receptors and modulators. Understanding the strengths and challenges of these approaches not only promotes the discovery of even more such receptors and modulators but also provides a useful reference for the identification of regulatory proteins or genes involved in other cellular mechanisms. In this review, we summarize the functions, disease association, and identification strategies of selective autophagy receptors and modulators.
Collapse
Affiliation(s)
| | | | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
He Y, Nan D, Wang H. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. Mol Neurobiol 2023; 60:6530-6541. [PMID: 37458988 DOI: 10.1007/s12035-023-03487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The non-receptor protein tyrosine phosphatase is a class of enzymes that catalyze the dephosphorylation of phosphotyrosines in protein molecules. They are involved in cellular signaling by regulating the phosphorylation status of a variety of receptors and signaling molecules within the cell, thereby influencing cellular physiological and pathological processes. In this article, we detail multiple non-receptor tyrosine phosphatase and non-receptor tyrosine phosphatase genes involved in the pathological process of brain disease. These include PTPN6, PTPN11, and PTPN13, which are involved in glioma signaling; PTPN1, PTPN5, and PTPN13, which are involved in the pathogenesis of Alzheimer's disease Tau protein lesions, PTPN23, which may be involved in the pathogenesis of Epilepsy and PTPN1, which is involved in the pathogenesis of Parkinson's disease. The role of mitochondrial tyrosine phosphatase in brain diseases was also discussed. Non-receptor tyrosine phosphatases have great potential for targeted therapies in brain diseases and are highly promising research areas.
Collapse
Affiliation(s)
- Yatong He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ding Nan
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
10
|
Serbina A, Bishop AC. Quantitation of autoinhibitory defects in pathogenic SHP2 mutants by differential scanning fluorimetry. Anal Biochem 2023; 680:115300. [PMID: 37659706 PMCID: PMC10530186 DOI: 10.1016/j.ab.2023.115300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Src-homology-2-domain-containing protein tyrosine phosphatase-2 (SHP2) is a signaling enzyme whose activity is governed by an equilibrium between autoinhibited and activated states. Regulation of SHP2 activity is critical for cellular homeostasis, and mutations that alter its autoregulatory equilibrium cause cancers and developmental disorders. Several methods for assessing the strength of autoinhibitory interactions in SHP2 mutants have been previously reported, but each has limitations. We show that differential scanning fluorimetry provides a rapid, quantitative measure of SHP2 autoinhibition that is independent of the intrinsic activity of the SHP2 mutant being analyzed, does not involve protein labeling, and does not require specialized instrumentation.
Collapse
Affiliation(s)
- Anna Serbina
- Amherst College, Department of Chemistry, Amherst, MA, 01002, United States
| | - Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, MA, 01002, United States.
| |
Collapse
|
11
|
Wang N, Zhu S, Lv D, Wang Y, Khawar MB, Sun H. Allosteric modulation of SHP2: Quest from known to unknown. Drug Dev Res 2023; 84:1395-1410. [PMID: 37583266 DOI: 10.1002/ddr.22100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) is a key regulatory factor in the cell cycle and its activating mutations play an important role in the development of various cancers, making it an important target for antitumor drugs. Due to the highly conserved amino acid sequence and positively charged nature of the active site of SHP2, it is difficult to discover inhibitors with high affinity for the catalytic site of SHP2 and sufficient cell permeability, making it considered an "undruggable" target. However, the discovery of allosteric regulation mechanisms provides new opportunities for transforming undruggable targets into druggable ones. Given the limitations of orthosteric inhibitors, SHP2 allosteric inhibitors have become a more selective and safer research direction. In this review, we elucidate the oncogenic mechanism of SHP2 and summarize the discovery methods of SHP2 allosteric inhibitors, providing new strategies for the design and improvement of SHP2 allosteric inhibitors.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, China
| | - Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, China
| | - Muhammad B Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| |
Collapse
|
12
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
13
|
Wu X, Song W, Cheng C, Liu Z, Li X, Cui Y, Gao Y, Li D. Small molecular inhibitors for KRAS-mutant cancers. Front Immunol 2023; 14:1223433. [PMID: 37662925 PMCID: PMC10470052 DOI: 10.3389/fimmu.2023.1223433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziyang Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Cui
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yao Gao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Wang M, Xiang Y, Wang R, Zhang L, Zhang H, Chen H, Luan X, Chen L. Dihydrotanshinone I Inhibits the Proliferation and Growth of Oxaliplatin-Resistant Human HCT116 Colorectal Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227774. [PMID: 36431875 PMCID: PMC9692243 DOI: 10.3390/molecules27227774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Oxaliplatin (OXA) is a first-line chemotherapeutic drug for the treatment of colorectal cancer (CRC), but acquired drug resistance becomes the main cause of treatment failure. Increasing evidence has shown that some natural components may serve as chemoresistant sensitizers. In this study, we discovered Dihydrotanshinone I (DHTS) through virtual screening using a ligand-based method, and explored its inhibitory effects and the mechanism on OXA-resistant CRC in vitro and in vivo. The results showed that DHTS could effectively inhibit the proliferation of HCT116 and HCT116/OXA resistant cells. DHTS-induced cell apoptosis blocked cell cycle in S and G2/M phases, and enhanced DNA damage of HCT116/OXA cells in a concentration-dependent manner. DHTS also exhibited the obvious inhibition of tumor growth in the HCT116/OXA xenograft model. Mechanistically, DHTS could downregulate the expression of Src homology 2 structural domain protein tyrosine phosphatase (SHP2) and Wnt/β-catenin, as well as conventional drug resistance and apoptosis-related proteins such as multidrug resistance associated proteins (MRP1), P-glycoprotein (P-gp), Bcl-2, and Bcl-xL. Thus, DHTS markedly induces cell apoptosis and inhibits tumor growth in OXA-resistant HCT116 CRC mice models, which can be used as a novel lead compound against OXA-resistant CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Luan
- Correspondence: (X.L.); (L.C.); Tel./Fax: +86-21-51322428 (X.L.); +86-21-51322720 (L.C.)
| | - Lili Chen
- Correspondence: (X.L.); (L.C.); Tel./Fax: +86-21-51322428 (X.L.); +86-21-51322720 (L.C.)
| |
Collapse
|
15
|
Ryan A, Janosko CP, Courtney TM, Deiters A. Engineering SHP2 Phosphatase for Optical Control. Biochemistry 2022; 61:2687-2697. [DOI: 10.1021/acs.biochem.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Song Y, Yang X, Wang S, Zhao M, Yu B. Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery. Med Res Rev 2022; 42:1781-1821. [DOI: 10.1002/med.21890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| | - Xinyu Yang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Shu Wang
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Min Zhao
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
| | - Bin Yu
- School of Pharmaceutical Sciences Zhengzhou University 450001 Henan Zhengzhou China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Zhengzhou University 450000 Henan Zhengzhou China
| |
Collapse
|
17
|
Wang M, Li T, Ouyang Z, Tang K, Zhu Y, Song C, Sun H, Yu B, Ji X, Sun Y. SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis. iScience 2022; 25:104009. [PMID: 35310939 PMCID: PMC8927994 DOI: 10.1016/j.isci.2022.104009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
SHP2 is the first oncogenic tyrosine phosphatase encoded by PTPN11, which plays a significant regulatory role in cancer and inflammation-related diseases. Although SHP2 allosteric inhibitors have been used in phase I/II clinical trials for solid tumors, whether SHP2 inhibition alleviates psoriasis remains unclear. Here we expressed and purified SHP2 related proteins, and established an enzyme activity screening system for different conformations of SHP2. We launched an iterative medicinal chemistry program and identified the lead compound, TK-453. Importantly, TK-453 possessed stronger affinity with SHP2 than SHP099, evidenced by the cocrystal structure of SHP2/TK-453, revealing that the additional aryl-S-aryl bridge in TK-453 induces a 1.8 Å shift of the dichlorophenyl ring and an approximate 20° deviation of the pyrazine ring plane relative to SHP099. Furthermore, TK-453 significantly ameliorated imiquimod-triggered skin inflammation in mice via inhibition of the IL-23/Th17 axis, proving that SHP2 is a potential therapeutic target for psoriasis. We identify a SHP2 allosteric inhibitor TK-453, which has a stronger affinity with SHP2 Cocrystal structure shows that TK-453 occupies the allosteric pocket of SHP2 TK-453 alleviates psoriasis-like skin inflammation in mice SHP2 inhibitor provides a new strategy for the treatment of psoriasis
Collapse
|
18
|
Abstract
SHP2 is a member of the non-receptor protein tyrosine phosphatases, encoded by PTPN11, and exhibits oncogenic activities. The close association between SHP2 and human cancer has made SHP2 a promising target for clinical therapy. Proteolysis-targeting chimera (PROTAC) technology utilizes the degradation mechanism of the ubiquitin proteasome system to degrade specific proteins. It has strong advantages compared with inhibitors. Here we list the four reported PROTAC molecules targeting SHP2 and summarize the recently reported SHP2 inhibitors which can provide lead compounds for designing new SHP2 PROTACs. We also introduce the dual PROTAC technology which may replace drug combinations to treat SHP2-related diseases.
Collapse
|
19
|
Song YH, Yang XY, Yu B. KRAS Q61H Mutation Confers Cancer Cells with Acquired Resistance to SHP2 Inhibition. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1743411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yi-Hui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Xin-Yu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Hexachlorophene, a selective SHP2 inhibitor, suppresses proliferation and metastasis of KRAS-mutant NSCLC cells by inhibiting RAS/MEK/ERK and PI3K/AKT signaling pathways. Toxicol Appl Pharmacol 2022; 441:115988. [DOI: 10.1016/j.taap.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
|
21
|
Tang K, Zhao M, Wu YH, Wu Q, Wang S, Dong Y, Yu B, Song Y, Liu HM. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors. Eur J Med Chem 2022; 230:114106. [PMID: 35063735 DOI: 10.1016/j.ejmech.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by the proto-oncogene PTPN11 is the first identified non-receptor protein tyrosine phosphatase. SHP2 dysregulation contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer therapy. In this article, we report the structure-guided design based on the well-characterized SHP2 inhibitor SHP099, extensive structure-activity relationship studies (SARs) of aminopyrazines, biochemical characterization and cellular potency. These medicinal chemistry efforts lead to the discovery of the lead compound TK-453, which potently inhibits SHP2 (SHP2WT IC50 = 0.023 μM, ΔTm = 7.01 °C) in a reversible and noncompetitive manner. TK-453 exhibits high selectivity over SHP2PTP, SHP1 and PTP1B, and may bind at the "tunnel" allosteric site of SHP2 as SHP099. As the key pharmacophore, the aminopyrazine scaffold not only reorganizes the cationic-π stacking interaction with R111 via the novel hydrogen bond interaction between the S atom of thioether linker and T219, but also mediates a hydrogen bond with E250. In vitro studies indicate that TK-453 inhibits proliferation of HeLa, KYSE-70 and THP-1 cells moderately and induces apoptosis of Hela cells. Further mechanistic studies suggest that TK-453 can decrease the phosphorylation levels of AKT and Erk1/2 in HeLa and KYSE-70 cells. Collectively, TK-453 is a highly potent, selective, and cellularly active allosteric SHP2 inhibitor that modulates the phosphorylation of SHP2-mediated AKT and Erk cell signaling pathways by inhibiting the phosphatase activity of SHP2.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiong Wu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Song Y, Wang S, Zhao M, Yang X, Yu B. Strategies Targeting Protein Tyrosine Phosphatase SHP2 for Cancer Therapy. J Med Chem 2022; 65:3066-3079. [PMID: 35157464 DOI: 10.1021/acs.jmedchem.1c02008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein tyrosine phosphatase SHP2 encoded by PTPN11 is a promising therapeutic target for cancer therapy, while the multifaceted roles of SHP2 complicate the drug discovery targeting SHP2. Given the biological significance of SHP2, strategies targeting SHP2 have been developed in recent years. To date, eight SHP2 inhibitors have advanced into clinical trials as mono- or combined therapy for treating solid tumors or adaptive resistant cancers. In this Perspective, we briefly summarize the strategies targeting SHP2 including inhibitors, activators, and proteolysis-targeting chimera (PROTAC) degraders. Besides, targeting the protein-protein interactions between SHP2 and other adaptor proteins is also discussed. Finally, we also highlight the target- and pathway-dependent combination strategies of SHP2 for cancer therapy. This Perspective may provide a timely and updated overview on the strategies targeting SHP2 for cancer therapy.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100000, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100000, China
| |
Collapse
|
23
|
Fan J, Liu Y, Kong R, Ni D, Yu Z, Lu S, Zhang J. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. J Med Chem 2021; 64:17728-17743. [PMID: 34878270 DOI: 10.1021/acs.jmedchem.1c01695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a fundamental and extensive mechanism of intramolecular signal transmission. Allosteric drugs possess several unique pharmacological advantages over traditional orthosteric drugs, including greater selectivity, better physicochemical properties, and lower off-target toxicity. However, owing to the complexity of allosteric regulation, experimental approaches for the development of allosteric modulators are traditionally serendipitous. Recently, the reversed allosteric communication theory has been proposed, providing a feasible tool for the unbiased detection of allosteric sites. Herein, we review the latest research on the reversed allosteric communication effect using the examples of sirtuin 6, epidermal growth factor receptor, 3-phosphoinositide-dependent protein kinase 1, and Related to A and C kinases (RAC) serine/threonine protein kinase B and recapitulate the methodologies of reversed allosteric communication strategy. The novel reversed allosteric communication strategy greatly expands the horizon of allosteric site identification and allosteric mechanism exploration and is expected to accelerate an end-to-end framework for drug discovery.
Collapse
Affiliation(s)
- Jigang Fan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.,State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11:3908-3924. [PMID: 35024315 PMCID: PMC8727779 DOI: 10.1016/j.apsb.2021.03.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Xuben Hou
- Corresponding author. Tel./fax: +86 531 88381168.
| | - Hao Fang
- Corresponding author. Tel./fax: +86 531 88381168.
| |
Collapse
|
25
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|