1
|
Ge Y. Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders. BIOLOGY 2025; 14:85. [PMID: 39857315 PMCID: PMC11762660 DOI: 10.3390/biology14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Advancing our understanding of pancreatic toxicity and metabolic disorders caused by environmental exposures requires innovative approaches. The pancreas, a vital organ for glucose regulation, is increasingly recognized as a target of harm from environmental chemicals and dietary factors. Traditional toxicological methods, while foundational, often fail to address the mechanistic complexities of pancreatic dysfunction, particularly under real-world conditions involving multiple exposures. New Approach Methodologies (NAMs)-including high-throughput screening (HTS), OMICS technologies, computational modeling, and advanced in vitro systems-offer transformative tools to tackle these challenges. NAMs enable the identification of mechanistic pathways, improve testing efficiency, and reduce reliance on animal testing. This commentary explores the integration of NAMs into pancreatic toxicity screening, addresses critical gaps in evaluating the cumulative risks of chemical and dietary exposures, and proposes solutions for integrating the pancreas into toxicity screening through NAMs. By highlighting recent advancements and emphasizing their adoption in environmental toxicity assessment frameworks, this work demonstrates the potential of NAMs to revolutionize environmental health research, inspire interdisciplinary collaboration, and protect public health.
Collapse
Affiliation(s)
- Yue Ge
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
2
|
Brueck L, Roocke S, Matschke V, Richter-Unruh A, Marcus-Alic K, Theiss C, Stahlke S. FGF23 and Cell Stress in SaOS-2 Cells-A Model Reflecting X-Linked Hypophosphatemia Dynamics. Cells 2024; 13:1515. [PMID: 39329699 PMCID: PMC11430666 DOI: 10.3390/cells13181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Our study investigates the impact of FGF23 overexpression on SaOS-2 cells to elucidate its role in cellular stress and morphology, contributing to the understanding of skeletal pathologies like X-linked hypophosphatemia (XLH). Using transmission electron microscopy and protein analysis (Western blot), we analyzed the rough endoplasmic reticulum (rER) and mitochondria in SaOS-2 cells with FGF23 overexpression compared to controls. We found significant morphological changes, including enlarged and elongated rER and mitochondria, with increased contact zones, suggesting enhanced interaction and adaptation to elevated protein synthesis and secretion demands. Additionally, we observed higher apoptosis rates of the cells after 24-72 h in vitro and upregulated proteins associated with ER stress and apoptosis, such as CHOP, XBP1 (spliced and unspliced), GRP94, eIF2α, and BAX. These findings indicate a robust activation of the unfolded protein response (UPR) and apoptotic pathways due to FGF23 overexpression. Our results highlight the critical role of ER and mitochondrial interactions in cellular stress responses and provide new insights into the mechanistic link between FGF23 signaling and cellular homeostasis. In conclusion, our study underscores the importance of analyzing UPR-related pathways in the development of therapeutic strategies for skeletal and systemic diseases and contributes to a broader understanding of diseases like XLH.
Collapse
Affiliation(s)
- Lisanne Brueck
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| | - Sascha Roocke
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Annette Richter-Unruh
- Clinic for Children and Adolescents, Pediatric Endocrinology, St. Josefs-Hospital, D-44791 Bochum, Germany
| | - Katrin Marcus-Alic
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| |
Collapse
|
3
|
Nishimiya Y, Morita Y, Wu C, Ohyama Y, Tochigi Y, Okuzawa T, Sakashita M, Asakawa A, Irie T, Ohmiya Y, Ohgiya S, Morita N. Molecular evolution of Cypridina noctiluca secretory luciferase for production of spectrum-shifted luminescence-emitting mutants and their application in nuclear receptor-reporter assays. Photochem Photobiol 2024; 100:573-586. [PMID: 37715991 DOI: 10.1111/php.13857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Luciferase is a popular enzyme used for biological analyses, such as reporter assays. In addition to a conventional reporter assay using a pair of firefly and Renilla luciferases, a simple multicolor reporter assay using multiple firefly or beetle luciferases emitting different color luminescence with a single substrate has been reported. Secretory luciferases have also been used for convenient sample preparation in reporter assays; however, reporter assay using secretory luciferase mutants that emit spectrum-shifted luminescence have not yet been reported. In this study, we generated blue- and red-shifted (-16 and 12 nm) luminescence-emitting Cypridina secretory luciferase (CLuc) mutants using multiple cycles of random and site-directed mutagenesis. Even for red-shifted CLuc mutant, which exhibited relatively low activity and stability, its enzymatic activity was sufficiently high for a luciferase assay (3.26 × 106 relative light unit/s), light emission was sufficiently prolonged (half-life is 3 min), and stability at 37°C was high. We independently determined the luminescence of these CLuc mutants using a luminometer with an optical filter. Finally, we replaced the commonly used reporters, firefly and Renilla luciferases used in a conventional nuclear receptor-reporter assay with these CLuc mutants and established a secretory luciferase-based single-substrate dual-color nuclear receptor-reporter assay.
Collapse
Affiliation(s)
- Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yosuke Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chun Wu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Yasushi Ohyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yuki Tochigi
- Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tsugumi Okuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Mami Sakashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | | | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
- Osaka Institute of Technology (OIT), Osaka, Japan
| | - Satoru Ohgiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- NOASTEC Foundation, Sapporo, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| |
Collapse
|
4
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Li K, Bian J, Xiao Y, Wang D, Han L, He C, Gong L, Wang M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. Int J Mol Sci 2023; 24:ijms24043513. [PMID: 36834922 PMCID: PMC9962587 DOI: 10.3390/ijms24043513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, there has been a significant increase in age-related diseases due to the improvement in life expectancy worldwide. The pancreas undergoes various morphological and pathological changes with aging, such as pancreatic atrophy, fatty degeneration, fibrosis, inflammatory cell infiltration, and exocrine pancreatic metaplasia. Meanwhile, these may predispose the individuals to aging-related diseases, such as diabetes, dyspepsia, pancreatic ductal adenocarcinoma, and pancreatitis, as the endocrine and exocrine functions of the pancreas are significantly affected by aging. Pancreatic senescence is associated with various underlying factors including genetic damage, DNA methylation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and inflammation. This paper reviews the alternations of morphologies and functions in the aging pancreas, especially β-cells, closely related to insulin secretion. Finally, we summarize the mechanisms of pancreatic senescence to provide potential targets for treating pancreatic aging-related diseases.
Collapse
Affiliation(s)
- Kailin Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Da Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
6
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
7
|
Cicalese S, Torimoto K, Okuno K, Elliott KJ, Rizzo V, Hashimoto T, Eguchi S. Endoplasmic Reticulum Chemical Chaperone 3-Hydroxy-2-Naphthoic Acid Reduces Angiotensin II-Induced Vascular Remodeling and Hypertension In Vivo and Protein Synthesis In Vitro. J Am Heart Assoc 2022; 11:e028201. [PMID: 36444851 PMCID: PMC9851446 DOI: 10.1161/jaha.122.028201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Background Investigations into alternative treatments for hypertension are necessary because current treatments cannot fully reduce the risk for the development of cardiovascular diseases. Chronic activation of unfolded protein response attributable to the endoplasmic reticulum stress has been proposed as a potential therapeutic target for hypertension and associated vascular remodeling. Triggered by the accumulation of misfolded proteins, chronic unfolded protein response leads to downstream signaling of cellular inflammation and dysfunction. Here, we have tested our hypothesis that a novel chemical chaperone, 3-hydroxy-2-naphthoic acid (3HNA) can attenuate angiotensin II (AngII)-induced vascular remodeling and hypertension. Methods and Results Mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension with or without 3HNA treatment. We found that injections of 3HNA prevented hypertension and increase in heart weight body weight ratio induced by AngII infusion. Histological assessment revealed that 3HNA treatment prevented vascular medial thickening as well as perivascular fibrosis in response to AngII infusion. In cultured vascular smooth muscle cells, 3HNA attenuated enhancement in protein synthesis induced by AngII. In vascular adventitial fibroblasts, 3HNA prevented induction of unfolded protein response markers. Conclusions We present evidence that a chemical chaperone 3HNA prevents vascular remodeling and hypertension in mice with AngII infusion, and 3HNA further prevents increase in protein synthesis in AngII-stimulated vascular smooth muscle cells. Using 3HNA may represent a novel therapy for hypertension with multiple benefits by preserving protein homeostasis under cardiovascular stress.
Collapse
Affiliation(s)
- Stephanie Cicalese
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Keiichi Torimoto
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Keisuke Okuno
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Katherine J. Elliott
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Victor Rizzo
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and NeurobiologyBarrow Neurological InstitutePhoenixAZ
| | - Satoru Eguchi
- Cardiovascular Research CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| |
Collapse
|
8
|
Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients 2022; 14:nu14122549. [PMID: 35745279 PMCID: PMC9229509 DOI: 10.3390/nu14122549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022] Open
Abstract
Urolithin A (Uro A) is a dietary metabolite of the intestinal microbiota following the ingestion of plant-based food ingredients ellagitannins and ellagic acid in mammals. Accumulating studies have reported its multiple potential health benefits in a broad range of diseases, including cardiovascular disease, cancer, cognitive impairment, and diabetes. In particular, Uro A is safe via direct oral administration and is non-genotoxic. The pancreas plays a central role in regulating energy consumption and metabolism by secreting digestive enzymes and hormones. Numerous pathophysiological factors, such as inflammation, deficits of mitophagy, and endoplasmic reticulum stress, can negatively affect the pancreas, leading to pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes mellitus. Recent studies showed that Uro A activates autophagy and inhibits endoplasmic reticulum stress in the pancreas, thus decreasing oxidative stress, inflammation, and apoptosis. In this review, we summarize the knowledge of Uro A metabolism and biological activity in the gut, as well as the pathological features and mechanisms of common pancreatic diseases. Importantly, we focus on the potential activities of Uro A and the underlying mechanisms in ameliorating various pancreatic diseases via inhibiting inflammatory signaling pathways, activating autophagy, maintaining the mitochondrial function, and improving the immune microenvironment. It might present a novel nutritional strategy for the intervention and prevention of pancreatic diseases.
Collapse
|