1
|
Guo Y, Jiang T, Liang S, Wang A, Li J, Jia Y, Li Q, Yin J, Bai S, Li J. Immunostimulatory Hydrogel with Synergistic Blockage of Glutamine Metabolism and Chemodynamic Therapy for Postoperative Management of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412507. [PMID: 39976234 PMCID: PMC12005773 DOI: 10.1002/advs.202412507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal malignant brain tumors in the central nervous system. Patients face many challenges after surgery, including tumor recurrence, intracranial pressure increase due to cavitation, and limitations associated with immediate postoperative oral chemotherapy. Here an injected peptide gel with in situ immunostimulatory functions is developed to coordinate the regulation of glutamine metabolism and chemodynamic therapy for overcoming these postoperative obstacles. The methodology entails crafting injectable gel scaffolds with short peptide molecules, incorporating the glutaminase inhibitor CB-839 and copper peptide self-assembled particles (Cu-His NPs) renowned for their chemodynamic therapy (CDT) efficacy. By fine-tuning glutamic acid production via metabolic pathways, this system not only heightens the therapeutic prowess of copper peptide particles in CDT but also escalates intracellular oxidative stress. This dual mechanism culminates in augmented immunogenic cell death within glioblastoma multiforme cells and improves a conducive immune microenvironment. Based on the concept of metabolic reprogramming, this treatment strategy has great potential to significantly reduce GBM tumor recurrence and prolong median survival in murine models.
Collapse
Affiliation(s)
- Yiran Guo
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Tianhe Jiang
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Sen Liang
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Anhe Wang
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jieling Li
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yi Jia
- University of Chinese Academy of SciencesBeijing100049China
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Qi Li
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Shuo Bai
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junbai Li
- University of Chinese Academy of SciencesBeijing100049China
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| |
Collapse
|
2
|
SONG S, WANG X, ZHOU S, CHENG X, LIN W, WANG Y, SUN Y. [Crosstalk between Tumor Cells and Neural Signals in Neuroendocrine Carcinoma
Metastasis: Communication Hijacking Based Perspective]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:138-145. [PMID: 40114490 PMCID: PMC11931239 DOI: 10.3779/j.issn.1009-3419.2025.101.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Indexed: 03/22/2025]
Abstract
Neuroendocrine carcinoma (NEC) represents a category of malignant tumors originating from neuroendocrine cells. Given that NEC cells exhibit characteristics of both neural and endocrine cells, they can hijack neuronal signaling pathways and dynamically regulate the expression of neuronal lineage markers during tumor metastasis, thereby constructing a microenvironment conducive to tumor growth and metastasis. Conversely, alterations in the tumor microenvironment can enhance the interactions between neurons and tumor cells, ultimately synergistically promoting the metastasis of NEC. This review highlights recent advancements in the field of cancer neuroscience, uncovering neuronal lineage markers in NEC that facilitate tumor dissemination through mediating crosstalk, bidirectional communication, and synergistic interactions between tumor cells and the nervous system. Consequently, the latest findings in tumor neuroscience have enriched our understanding of the biological mechanisms underlying tumor metastasis, opening new research avenues for a deeper comprehension of the complex biological processes involved in tumor metastasis, particularly brain metastasis. This review provides a comprehensive review of the crosstalk between tumor cells and neural signaling in the metastasis of NEC.
.
Collapse
|
3
|
Zhang B, Leung PC, Cho WCS, Wong CK, Wang D. Targeting PI3K signaling in Lung Cancer: advances, challenges and therapeutic opportunities. J Transl Med 2025; 23:184. [PMID: 39953539 PMCID: PMC11829425 DOI: 10.1186/s12967-025-06144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, necessitating the continual exploration of novel therapeutic targets. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a pivotal role in oncogenic processes, including cell growth, survival, metabolism and immune modulation. This comprehensive review delineates the distinct roles of PI3K subtypes-PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ-in lung cancer pathogenesis and progression. We evaluate the current landscape of PI3K inhibitors, transitioning from non-selective early-generation compounds to isoform-specific agents, highlighting their clinical efficacy, resistance mechanisms and potential combination strategies. Furthermore, the intricate interplay between PI3K signaling and the tumor immune microenvironment is explored, elucidating how PI3K modulation can enhance immunotherapeutic responses. Metabolic reprogramming driven by PI3K signaling is also dissected, revealing vulnerabilities that can be therapeutically exploited. Despite promising advancements, challenges such as therapeutic resistance and adverse effects underscore the need for personalized medicine approaches and the development of next-generation inhibitors. This review underscores the multifaceted role of PI3K in lung cancer and advocates for integrated strategies to harness its full therapeutic potential, paving the way for improved patient outcomes.
Collapse
Affiliation(s)
- Bitian Zhang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Dongjie Wang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
5
|
de São José VS, Vieira BM, Neto VM, Lima LM. Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study. Pharmaceuticals (Basel) 2024; 17:1623. [PMID: 39770465 PMCID: PMC11678499 DOI: 10.3390/ph17121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms. Methods: Here, we propose the combination of Osimertinib (a potent EGFR inhibitor) and Gedatolisib (a potent PI3K/mTOR dual inhibitor) through an in vitro phenotypic study using five human GB lines and establish the cytotoxic potency, selectivity, and effect on proliferation, apoptosis, and cell cycle by simultaneously inhibiting EGFR, PI3K, and mTOR. Results: Cytotoxic potency of Gedatolisib and Osimertinib in the selected GB cell lines was determined, which highlighted the synergistic response from their combination and its impact on migration reduction, G0/G1 cell cycle arrest, GB cytotoxicity, and apoptosis-inducing effects for different GB cell lines. Conclusions: From the drug combination studies in phenotypic in vitro models, it was possible to suggest a new potential treatment for glioblastoma that justifies further safe in vivo phases of preclinical trials with the combination.
Collapse
Affiliation(s)
- Vitória Santório de São José
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
| | - Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
| | - Lidia M. Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
6
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
7
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Feng L, Chen X, Sheng G, Li Y, Li Y, Zhang Y, Yao K, Wu Z, Zhang R, Kiboku T, Kawasaki A, Horimoto K, Tang Y, Sun M, Han F, Chen D. Synthesis and Bioevaluation of 3-(Arylmethylene)indole Derivatives: Discovery of a Novel ALK Modulator with Antiglioblastoma Activities. J Med Chem 2023; 66:14609-14622. [PMID: 37861443 DOI: 10.1021/acs.jmedchem.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Glioblastoma is the most common brain tumor, with high recurrence and low survival rates. An integrative bioinformatics analysis demonstrated that anaplastic lymphoma kinase (ALK) is a promising therapeutic target for glioblastoma. We designed and synthesized a series of 3-(arylmethylene)indole derivatives, which were further evaluated for antiproliferative activity using glioma cell lines. Among them, compound 4a significantly inhibited the viability of glioblastoma cells. With favorable pharmacokinetic characteristics and blood-brain barrier permeability, 4a improved the survival rate and inhibited the growth of orthotopic glioblastoma. The Phospho-Totum system revealed that ALK was a potential target for the antiglioblastoma activity of 4a. Further experiments indicated that 4a might be a novel ALK modulator, which interacted with the extracellular ligand-binding domain of ALK, thus selectively induced ERK-mediated autophagy and apoptosis. Our findings provide an alternative ALK-based targeting strategy and a new drug candidate for glioblastoma therapy.
Collapse
Affiliation(s)
- Lili Feng
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Gang Sheng
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingchun Li
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingying Li
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yixuan Zhang
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Kun Yao
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Zhouyue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Rong Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | | | | | - Katsuhisa Horimoto
- Socium Inc., Tokyo 1350064, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 1350064, Japan
| | - Yamin Tang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meiling Sun
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dongyin Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Zhou J, Du T, Wang X, Yao H, Deng J, Li Y, Chen X, Sheng L, Ji M, Xu B. Discovery of Quinazoline-2,4(1 H,3 H)-dione Derivatives Containing a Piperizinone Moiety as Potent PARP-1/2 Inhibitors─Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis. J Med Chem 2023; 66:14095-14115. [PMID: 37843892 DOI: 10.1021/acs.jmedchem.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PARP-1/2 inhibitors have become an important therapeutic strategy for the treatment of HR-deficient tumors. However, discovery of new inhibitors with an improved and distinct pharmacological file still need enormous explorations. Herein, a series of novel highly potent PARP-1/2 inhibitors bearing an N-substituted piperazinone moiety were achieved. In particular, Cpd36 was identified as a distinct PARP inhibitor, showing remarkable enzymatic activity not only toward PARP-1 (IC50 = 0.94 nM) and PARP-2 (IC50 = 0.87 nM) but also toward PARP-7 (IC50 = 0.21 nM), as well as high selectivity over other PARP isoforms. Furthermore, Cpd36 was orally bioavailable and significantly repressed the tumor growth in both breast cancer and prostate cancer xenograft model. The crystal structures of Cpd36 within PARP-1 and PARP-2 together with the predicted binding mode within PARP-7 revealed its binding features and provided insightful information for further developing highly potent and selective PARP-1 and/or PARP-7 inhibitors.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiping Yao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jialing Deng
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
11
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers (Basel) 2022; 14:5377. [PMID: 36358795 PMCID: PMC9655599 DOI: 10.3390/cancers14215377] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common histologic type of all gliomas and contributes to 57.3% of all cases. Despite the standard management based on surgical resection and radiotherapy, it is related to poor outcome, with a 5-year relative survival rate below 6.9%. In order to improve the overall outcome for patients, the new therapeutic strategies are needed. Herein, we describe the current state of knowledge on novel targeted therapies in glioblastoma. Based on recent studies, we compared treatment efficacy measured by overall survival and progression-free survival in patients treated with selected potential antitumor drugs. The results of the application of the analyzed inhibitors are highly variable despite the encouraging conclusions of previous preclinical studies. This paper focused on drugs that target major glioblastoma kinases. As far, the results of some BRAF inhibitors are favorable. Vemurafenib demonstrated a long-term efficacy in clinical trials while the combination of dabrafenib and trametinib improves PFS compared with both vemurafenib and dabrafenib alone. There is no evidence that any MEK inhibitor is effective in monotherapy. According to the current state of knowledge, BRAF and MEK inhibition are more advantageous than BRAF inhibitor monotherapy. Moreover, mTOR inhibitors (especially paxalisib) may be considered a particularly important group. Everolimus demonstrated a partial response in a significant proportion of patients when combined with bevacizumab, however its actual role in the treatment is unclear. Neither nintedanib nor pemigatinib were efficient in treatment of GBM. Among the anti-VEGF drugs, bevacizumab monotherapy was a well-tolerated option, significantly associated with anti-GBM activity in patients with recurrent GBM. The efficacy of aflibercept and pazopanib in monotherapy has not been demonstrated. Apatinib has been proven to be effective and tolerable by a single clinical trial, but more research is needed. Lenvatinib is under trial. Finally, promising results from a study with regorafenib may be confirmed by the ongoing randomized AGILE trial. The studies conducted so far have provided a relatively wide range of drugs, which are at least well tolerated and demonstrated some efficacy in the randomized clinical trials. The comprehensive understanding of the molecular biology of gliomas promises to further improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Wieteska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Monika Wacławska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
12
|
Pan Z, Chen Y, Pang H, Wang X, Zhang Y, Xie X, He G. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells. Eur J Med Chem 2022; 242:114674. [PMID: 35987020 DOI: 10.1016/j.ejmech.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel class of thieno [2,3-d] pyrimidine derivatives containing resorcinol and morpholine fragments as Hsp90/mTOR dual inhibitors was designed, synthesized, and evaluated. In vitro anti-tumor assay results: the obtained compounds demonstrated effectiveness in suppressing the enzymatic activities of the Hsp90 and mTOR and inhibiting the proliferation of J82, T24, and SW780 cancer cell lines. Among these dual inhibitors, the most potent compound 17o, confirmed remarkable inhibitory activities on Hsp90, mTOR, and SW780 cell. Furthermore, the molecular dynamics simulation and a panel of mechanism studies revealed that inhibitor 17o suppressed the proliferation of SW780 cells through the over-activation of the PI3K/AKT/mTOR pathway regulated by mTOR inhibition and apoptosis regulated by the mitochondrial pathway. In subcutaneous J82 xenograft models, the compound 17o also presented considerable in vivo anti-tumor activity. Therefore, our investigations highlight that a new-found dual Hsp90/mTOR inhibitor by rational drug design strategies could be a promising lead compound for targeted bladder cancer therapy and deserves further studies.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haiying Pang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuehua Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
13
|
Cui Q, Wang C, Zeng L, Zhou QX, Fan YF. Editorial: Novel Small-Molecule Agents in Overcoming Multidrug Resistance in Cancers. Front Chem 2022; 10:921985. [PMID: 35601552 PMCID: PMC9114663 DOI: 10.3389/fchem.2022.921985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- *Correspondence: Qingbin Cui,
| | - Cong Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ying-Fang Fan
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H, Chen X. The PI3K Inhibitor XH30 Enhances Response to Temozolomide in Drug-Resistant Glioblastoma via the Noncanonical Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:749242. [PMID: 34899305 PMCID: PMC8662317 DOI: 10.3389/fphar.2021.749242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)-based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog-triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|