1
|
Yu Y, Hu W, Xu Y, Xu HB, Gao J. Advancements in delivery Systems for Proteolysis-Targeting Chimeras (PROTACs): Overcoming challenges and expanding biomedical applications. J Control Release 2025; 382:113719. [PMID: 40268200 DOI: 10.1016/j.jconrel.2025.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
PROTAC (Proteolysis-Targeting Chimera), an emerging drug development strategy based on small molecule technology, has garnered widespread attention due to its high efficiency, broad applicability, low resistance, and dosage advantages. However, PROTAC molecules still exhibit certain limitations that require urgent resolution. Although significant progress has been made in designing PROTACs that target various disease-related proteins, research on drug delivery systems (DDS) for PROTACs remains relatively limited. This review aims to explore the critical role of delivery system design in addressing the inherent challenges associated with PROTAC molecules from a novel perspective. Beginning with five major challenges-insufficient targeting, poor pharmacokinetic properties, low cell permeability, limited accessibility, and the Hook effect-this article introduces formulation strategies to mitigate these deficiencies. It discusses potential solutions through targeted modifications, nano-delivery systems, intelligent response systems, and membrane biomimetic technologies, among others. Furthermore, it elucidates the mechanisms and principles underlying these approaches and analyzes the advantages of various delivery strategies. The insights provided in this review offer insights for designing delivery systems tailored to PROTACs with diverse characteristics for different disease applications.
Collapse
Affiliation(s)
- Yawei Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Xu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Zhe Jiang 315010, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2025; 15:1801-1827. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
M S, Joga R, Gandhi K, Yerram S, Raghuvanshi RS, Srivastava S. Exploring the clinical trials, regulatory insights, and challenges of PROTACs in oncology. Semin Oncol 2025; 52:152339. [PMID: 40253775 DOI: 10.1016/j.seminoncol.2025.152339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/22/2025]
Abstract
While various targeted therapies exist for cancer, resistance mechanisms remain a significant challenge. Recent advancements in cancer treatment have led to the emergence of proteolysis-targeting chimeras (PROTACs), a promising technology utilizing hetero-bifunctional molecules to target and degrade proteins implicated in cancer progression through the ubiquitin-proteasome system (UPS). PROTACs offer a novel approach, with recent studies and clinical trials demonstrating promising outcomes in degrading endogenous proteins linked to cancer. This work explores classification, regulatory approvals, and ongoing clinical trials of PROTAC technology in cancer management. It emphasizes the importance of regulatory compliance to expedite approvals from relevant authorities. It also highlights challenges and opportunities associated with their implementation. Despite these preliminary efforts, PROTACs show immense potential in effectively addressing cancer. Their ability to target specific proteins for degradation represents a significant advancement in cancer therapeutics, offering new hope for improved outcomes in patient care.
Collapse
Affiliation(s)
- Sowndharya M
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kajal Gandhi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sravani Yerram
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajeev Singh Raghuvanshi
- Central Drug Standard Control Organization (CDSCO), Ministry of Health & Family Welfare, Government of India, New Delhi, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Trory JS, Vautrinot J, May CJ, Hers I. PROTACs in platelets: emerging antithrombotic strategies and future perspectives. Curr Opin Hematol 2025; 32:34-42. [PMID: 39446364 DOI: 10.1097/moh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Proteolysis-targeted chimeras (PROTACs) are heterobifunctional compounds that selectively target proteins for degradation and are an emerging therapeutic modality to treat diseases such as cancer and neurodegenerative disorders. This review will widen the area of application by highlighting the ability of PROTACs to remove proteins from the anucleate platelets and evaluate their antithrombotic potential. RECENT FINDINGS Proteomic and biochemical studies demonstrated that human platelets possess the Ubiquitin Proteasomal System as well as the E3 ligase cereblon (CRBN) and therefore may be susceptible to PROTAC-mediated protein degradation. Recent findings confirmed that CRBN ligand-based PROTACs targeting generic tyrosine kinases, Btk and/or Fak lead to efficacious and selective protein degradation in human platelets. Downregulation of Btk, a key player involved in signalling to thrombosis, but not haemostasis, resulted in impaired in-vitro thrombus formation. SUMMARY Platelets are susceptible to targeted protein degradation by CRBN ligand-based PROTACs and have limited ability to resynthesise proteins, ensuring long-term downregulation of target proteins. Therefore, PROTACs serve as an additional research tool to study platelet function and offer new therapeutic potential to prevent thrombosis. Future studies should focus on enhancing cell specificity to avoid on-target side effects on other blood cells.
Collapse
Affiliation(s)
- Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
5
|
Abbas A, Ye F. Computational methods and key considerations for in silico design of proteolysis targeting chimera (PROTACs). Int J Biol Macromol 2024; 277:134293. [PMID: 39084437 DOI: 10.1016/j.ijbiomac.2024.134293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs), as heterobifunctional molecules, have garnered significant attention for their ability to target previously undruggable proteins. Due to the challenges in obtaining crystal structures of PROTAC molecules in the ternary complex, a plethora of computational tools have been developed to aid in PROTAC design. These computational tools can be broadly classified into artificial intelligence (AI)-based or non-AI-based methods. This review aims to provide a comprehensive overview of the latest computational methods for the PROTAC design process, covering both AI and non-AI approaches, from protein selection to ternary complex modeling and prediction. Key considerations for in silico PROTAC design are discussed, along with additional considerations for deploying AI-based models. These considerations are intended to guide subsequent model development in the PROTAC design process. Finally, future directions and recommendations are provided.
Collapse
Affiliation(s)
- Amr Abbas
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Shi YY, Fan G, Tan R, Li S, Sun HB, Li R, Yang M, Gao S, Liu M, Dai MY. Treating ICB-resistant cancer by inhibiting PD-L1 via DHHC3 degradation induced by cell penetrating peptide-induced chimera conjugates. Cell Death Dis 2024; 15:701. [PMID: 39349454 PMCID: PMC11442653 DOI: 10.1038/s41419-024-07073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
The current selection of ligands for both proteins of interest (POI) and E3 ubiquitin ligase significantly restricts the scope of targeted protein degradation (TPD) technologies. This study introduces cell-penetrating peptide-induced chimera conjugates (cp-PCCs) targeting the DHHC3 enzyme involved in PD-L1 palmitoylation. This approach disrupts PD-L1's immunosuppressive function, enhancing anti-tumor immunity. We developed cp-PCCs to degrade DHHC3, directly linking DHHC3-mediated PD-L1 palmitoylation to PD-L1 stability on tumor cells. Our research utilized both in vitro assays and in vivo experiments in immune checkpoint blockade-resistant mouse models. We focused on a CRBN-based cp-PCC named PCC16, which demonstrated a DC50 of 102 nmol for DHHC3 degradation and significantly reduced PD-L1 levels. In resistant models, PCC16 not only robustly downregulated PD-L1 but also exhibited substantial anti-tumor activity in vivo without significant toxicity. This outperformed traditional inhibitors, showcasing the potential of cp-PCC technology to bypass current PROTAC limitations. Our findings suggest that cp-PCCs offer a promising method for targeting PD-L1 through DHHC3 inhibition and support their continued exploration as a versatile tool in cancer immunotherapy, especially for tumors resistant to standard treatments.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ruirong Tan
- ChinaTranslational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Shan Li
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua-Bing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Chengdu, China
| | - Mengni Yang
- ChinaTranslational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Shanshan Gao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
8
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
9
|
Rahman M, Marzullo B, Holman SW, Barrow M, Ray AD, O’Connor PB. Advancing PROTAC Characterization: Structural Insights through Adducts and Multimodal Tandem-MS Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:285-299. [PMID: 38197777 PMCID: PMC10853971 DOI: 10.1021/jasms.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are specialized molecules that bind to a target protein and a ubiquitin ligase to facilitate protein degradation. Despite their significance, native PROTACs have not undergone tandem mass spectrometry (MS) analysis. To address this gap, we conducted a pioneering investigation on the fragmentation patterns of two PROTACs in development, dBET1 and VZ185. Employing diverse cations (sodium, lithium, and silver) and multiple tandem-MS techniques, we enhanced their structural characterization. Notably, lithium cations facilitated comprehensive positive-mode coverage for dBET1, while negative polarity mode offered richer insights. Employing de novo structure determination on 2DMS data from degradation studies yielded crucial insights. In the case of VZ185, various charge states were observed, with [M + 2H]2+ revealing fewer moieties than [M + H]+ due to charge-related factors. Augmenting structural details through silver adducts suggested both charge-directed and charge-remote fragmentation. This comprehensive investigation identifies frequently dissociated bonds across multiple fragmentation techniques, pinpointing optimal approaches for elucidating PROTAC structures. The findings contribute to advancing our understanding of PROTACs, pivotal for their continued development as promising therapeutic agents.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Bryan Marzullo
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Stephen W. Holman
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Mark Barrow
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Andrew D. Ray
- New
Modalities and Parenteral Development, Pharmaceutical Technology &
Development, Operations, AstraZeneca, Macclesfield, SK10 4TF, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| |
Collapse
|
10
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
12
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
13
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Schaefer D, Cheng X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals (Basel) 2023; 16:ph16050663. [PMID: 37242447 DOI: 10.3390/ph16050663] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In spite of the increasing number of biologics license applications, the development of covalent inhibitors is still a growing field within drug discovery. The successful approval of some covalent protein kinase inhibitors, such as ibrutinib (BTK covalent inhibitor) and dacomitinib (EGFR covalent inhibitor), and the very recent discovery of covalent inhibitors for viral proteases, such as boceprevir, narlaprevir, and nirmatrelvir, represent a new milestone in covalent drug development. Generally, the formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be 'undruggable'. The aim of this review is to highlight the current state of covalent inhibitor development, including a short historical overview and some examples of applications of PROTAC technologies and treatment of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Daniel Schaefer
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
- Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat Commun 2023; 14:567. [PMID: 36732329 PMCID: PMC9895058 DOI: 10.1038/s41467-023-36253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
|
16
|
Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm Sin B 2022; 12:2990-3005. [PMID: 35865099 PMCID: PMC9293674 DOI: 10.1016/j.apsb.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
The proteolysis targeting chimeras (PROTACs) technology has been rapidly developed since its birth in 2001, attracting rapidly growing attention of scientific institutes and pharmaceutical companies. At present, a variety of small molecule PROTACs have entered the clinical trial. However, as small molecule PROTACs flourish, non-small molecule PROTACs (NSM-PROTACs) such as peptide PROTACs, nucleic acid PROTACs and antibody PROTACs have also advanced considerably over recent years, exhibiting the unique characters beyond the small molecule PROTACs. Here, we briefly introduce the types of NSM-PROTACs, describe the advantages of NSM-PROTACs, and summarize the development of NSM-PROTACs so far in detail. We hope this article could not only provide useful insights into NSM-PROTACs, but also expand the research interest of NSM-PROTACs.
Collapse
Affiliation(s)
- Sinan Ma
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jianai Ji
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tianbao Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
18
|
Xu J, Du W, Zhao Y, Lim K, Lu L, Zhang C, Li L. Mitochondria targeting drugs for neurodegenerative diseases—design, mechanism and application. Acta Pharm Sin B 2022; 12:2778-2789. [PMID: 35755284 PMCID: PMC9214044 DOI: 10.1016/j.apsb.2022.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are a heterogeneous group of disorders characterized by progressive degeneration of neurons. NDDs threaten the lives of millions of people worldwide and regretfully remain incurable. It is well accepted that dysfunction of mitochondria underlies the pathogenesis of NDDs. Dysfunction of mitochondria results in energy depletion, oxidative stress, calcium overloading, caspases activation, which dominates the neuronal death of NDDs. Therefore, mitochondria are the preferred target for intervention of NDDs. So far various mitochondria-targeting drugs have been developed and delightfully some of them demonstrate promising outcome, though there are still some obstacles such as targeting specificity, delivery capacity hindering the drugs development. In present review, we will elaborately address 1) the strategy to design mitochondria targeting drugs, 2) the rescue mechanism of respective mitochondria targeting drugs, 3) how to evaluate the therapeutic effect. Hopefully this review will provide comprehensive knowledge for understanding how to develop more effective drugs for the treatment of NDDs.
Collapse
|