1
|
Sengupta S, Maji L, Das PK, Teli G, Nag M, Khan N, Haque M, Matada GSP. Explanatory review on DDR inhibitors: their biological activity, synthetic route, and structure-activity relationship. Mol Divers 2025:10.1007/s11030-024-11091-5. [PMID: 39883387 DOI: 10.1007/s11030-024-11091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition. Very few scientific data are available so there is a need to study the receptors and their inhibitors. Still, there did not exist FDA-approved small molecules targeting DDR1 and DDR2 receptors so there is an urgent need to develop potent small molecules. Further, the structural features and ligand specificities encourage the researchers to be fascinated about the DDR and explore them for the mentioned biological conditions. Therefore, in the last few years, researchers have been involved in investigating the potent DDR inhibitors. The current review provides an outlook on the anatomy and physiology of DDR, focusing on the structural features of DDR receptors and the mechanism of signaling pathways. We have also compiled the evolutionary development status of DDR inhibitors according to their chemical classes, biological activity, selectivity, and structure-activity relationship. From biological activity analysis, it was revealed that compounds 64a (selectivity: DDR1) and 103a (selectivity: DDR2) were the most potent candidates with excellent activity with IC50 values of 4.67 and 3.2 nM, respectively.
Collapse
Affiliation(s)
- Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
- NEF College of Pharmaceutical Education & Research, Nagaon, 782001, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
- Tarifa Memorial Institute of Pharmacy, Murshidabad, West Bengal, 742166, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, Rajasthan, 311001, India.
| | - Mrinmoy Nag
- NEF College of Pharmaceutical Education & Research, Nagaon, 782001, India
| | - Nirmalya Khan
- Tarifa Memorial Institute of Pharmacy, Murshidabad, West Bengal, 742166, India
| | - Mridul Haque
- Tarifa Memorial Institute of Pharmacy, Murshidabad, West Bengal, 742166, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
2
|
Liu L, Zhao L, Yang L, Chai M, Liu Z, Ma N, Wang Y, Wu Q, Guo J, Zhou F, Huang W, Ren X, Wang J, Ding M, Wang Z, Ding K. Discovery of LLC355 as an Autophagy-Tethering Compound for the Degradation of Discoidin Domain Receptor 1. J Med Chem 2024; 67:8043-8059. [PMID: 38730324 DOI: 10.1021/acs.jmedchem.4c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a potential target for cancer drug discovery. Although several DDR1 kinase inhibitors have been developed, recent studies have revealed the critical roles of the noncatalytic functions of DDR1 in tumor progression, metastasis, and immune exclusion. Degradation of DDR1 presents an opportunity to block its noncatalytic functions. Here, we report the discovery of the DDR1 degrader LLC355 by employing autophagosome-tethering compound technology. Compound LLC355 efficiently degraded DDR1 protein with a DC50 value of 150.8 nM in non-small cell lung cancer NCI-H23 cells. Mechanistic studies revealed compound LLC355 to induce DDR1 degradation via lysosome-mediated autophagy. Importantly, compound LLC355 potently suppressed cancer cell tumorigenicity, migration, and invasion and significantly outperformed the corresponding inhibitor 1. These results underline the therapeutic advantage of targeting the noncatalytic function of DDR1 over inhibition of its kinase activity.
Collapse
Affiliation(s)
- Lianchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lijie Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lujun Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, #1 Xiangshan Branch Lane, Hangzhou 310024, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Minxue Chai
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhengyong Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Nan Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., #38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jian Wang
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| |
Collapse
|
3
|
Liu M, Zhang J, Li X, Wang Y. Research progress of DDR1 inhibitors in the treatment of multiple human diseases. Eur J Med Chem 2024; 268:116291. [PMID: 38452728 DOI: 10.1016/j.ejmech.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase (RTK) and plays pivotal roles in regulating cellular functions such as proliferation, differentiation, invasion, migration, and matrix remodeling. DDR1 is involved in the occurrence and progression of many human diseases, including cancer, fibrosis, and inflammation. Therefore, DDR1 represents a highly promising therapeutic target. Although no selective small-molecule inhibitors have reached clinical trials to date, many molecules have shown therapeutic effects in preclinical studies. For example, BK40143 has demonstrated significant promise in the therapy of neurodegenerative diseases. In this context, our perspective aims to provide an in-depth exploration of DDR1, encompassing its structure characteristics, biological functions, and disease relevance. Furthermore, we emphasize the importance of understanding the structure-activity relationship of DDR1 inhibitors and highlight the unique advantages of dual-target or multitarget inhibitors. We anticipate offering valuable insights into the development of more efficacious DDR1-targeted drugs.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
4
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
5
|
Ruzi Z, Bozorov K, Nie L, Zhao J, Akber Aisa H. Discovery of novel (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one as DDR2 kinase inhibitor: Synthesis, molecular docking, and anticancer properties. Bioorg Chem 2023; 135:106506. [PMID: 37030105 DOI: 10.1016/j.bioorg.2023.106506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
We report the synthesis, molecular docking and anticancer properties of the novel compound (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (PP562). PP562 was screened against sixteen human cancer cell lines and exhibited excellent antiproliferative activity with IC50 values ranging from 0.016 to 5.667 μM. Experiments were carried out using the target PP562 at a single dose of 1.0 μM against a kinase panel comprising 100 different enzymes. A plausible binding mechanism for PP562 inhibition of DDR2 was determined using molecular dynamic analysis. The effect of PP562 on cell proliferation was also examined in cancer cell models with both high and low expression of the DDR2 gene; PP562 inhibition of high-expressing cells was more prominent than that for low expressing cells. PP562 also exhibits excellent anticancer potency toward the HGC-27 gastric cancer cell line. In addition, PP562 inhibits colony formation, cell migration, and adhesion, induces cell cycle arrest at the G2/M phase, and affects ROS generation and cell apoptosis. After DDR2 gene knockdown, the antitumor effects of PP562 on tumor cells were significantly impaired. These results suggested that PP562 might exert its inhibitory effect on HCG-27 proliferation through the DDR2 target.
Collapse
|