1
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
2
|
Song CH, Lin CW, Han KH. Cell cycle-based antibody selection for suppressing cancer cell growth. FASEB J 2025; 39:e70402. [PMID: 39953793 DOI: 10.1096/fj.202401586rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cell cycle arrest and programmed cell death are crucial biological processes in cancer development. Regulating cell fate decisions is essential due to their potential to induce cell cycle arrest and cell death. Inducing cell cycle regulatory proteins in tumor cells is considered a key objective in cancer therapy. Here, we present a novel method that selects antibodies from an antibody library to inhibit cancer growth using fluorescence-activated cell sorting (FACS) assays and cell cycle analysis. This approach seeks antibodies that induce cancer cells to enter the G0 or G1 phase, a quiescent state where cells cease to proliferate and trigger programmed cell death. We found that the T1 antibody effectively suppresses the proliferation of cancer cells. Mechanistically, serine protease 3 (PRSS3) is a target antigen of the T1 antibody. We demonstrated that PRSS3 controls tumor cell proliferation and apoptosis through interaction with the T1 antibody. This research suggests that PRSS3 holds great potential as a target for solid cancer treatment. This cycle-based approach to antibody screening shows potential because it can be broadly applied to cancer and other challenging diseases.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
3
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Lu L, Gao Z, Song J, Jin L, Liang Z. The potential of diallyl trisulfide for cancer prevention and treatment, with mechanism insights. Front Cell Dev Biol 2024; 12:1450836. [PMID: 39403128 PMCID: PMC11471646 DOI: 10.3389/fcell.2024.1450836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 02/13/2025] Open
Abstract
Cancer has become an important public health problem worldwide, and there is currently a lack of effective treatment and prevention strategies. Natural plant active ingredients have been proven to be a safe and highly promising method for preventing and treating cancer. It has been found that diallyl trisulfide have anticancer effects in multiple types of cancer via inhibiting cancer proliferation, enhancing chemotherapy sensitivity, inducing apoptosis/autophagy, suppressing invasion/migration, regulating microenvironment. With the deepening of research on new strategies for cancer prevention and treatment, the role of diallyl trisulfides in cancers occurrence, prognosis, and drug resistance is also receiving increasing attention. In order to better understand the relationship between diallyl trisulfides and various cancer, as well as the role and mechanism of diallyl trisulfides in cancer prevention and treatment, we briefly summarized the role and function of diallyl trisulfide in cancers.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zihan Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiajia Song
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Chen J, Wang D, Wu G, Xiong F, Liu W, Wang Q, Kuai Y, Huang W, Qi Y, Wang B, Chen Y. STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A. J Exp Clin Cancer Res 2024; 43:260. [PMID: 39267107 PMCID: PMC11395162 DOI: 10.1186/s13046-024-03186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. METHODS We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. RESULTS This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. CONCLUSIONS These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA.
Collapse
Affiliation(s)
- Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Fei Xiong
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yiyang Kuai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Wenhua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430074, China.
| |
Collapse
|
6
|
Xu M, Zhang J, Shi Z, He Z, Zhao Y, Ling X, Wang W, Gong M. Amelioration of nitroglycerin-induced migraine in mice via Wuzhuyu decoction: Inhibition of the MZF1/PGK1 pathway and activation of NRF2 antioxidant response. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117930. [PMID: 38373662 DOI: 10.1016/j.jep.2024.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine, a chronic and intricate disorder, manifests as recurrent episodic headaches accompanied by various neurological symptoms. Wuzhuyu Decoction (WZYD) is a traditional Chinese medical formula with promising effects in treating migraines; however, its underlying mechanisms have not yet been clarified. AIM OF STUDY The study aimed to evaluate WZYD's effectiveness in migraine treatment and investigate the potential mechanism of WZYD's effects on migraine and oxidative stress. MATERIALS AND METHODS Behavior tests and immunofluorescence assay for the intensity of migraine markers to assess the migraine-relieving effect of WZYD after chronic migraine model induced by nitroglycerin in mice. The impacts of WZYD on oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO1), and NAD (P)H quinone oxidoreductase 1 (NQO1) in brain tissue were examined. In addition, protein expression or mRNA levels of the MZF1/PGK1 were detected using Western blot or PCR, respectively. Finally, the MZF1 overexpression vector was constructed to the higher level of MZF1. The MZF1/PGK1 signaling pathway expression was evaluated by markers of oxidative stress including NRF2 and others in this series of experiments. RESULTS Through murine model experimentation, we observed that WZYD effectively alleviates migraine symptoms, signifying its therapeutic efficacy. Mechanistically, WZYD emerges as a potent activator of the NRF2, acting as a robust defense against oxidative stress. In vitro investigations demonstrated that WZYD combats oxidative stress and curbs cell apoptosis induced by these detrimental conditions. Furthermore, by suppressing the transcriptional expression of PGK1, an influential player in the NRF2 pathway, WZYD effectively activates NRF2 signaling. Intriguingly, we have identified MZF1 as the mediator orchestrating the regulation of the PGK1/NRF2 pathway by WZYD. CONCLUSION The study confirms the effectiveness of WZYD in alleviating migraine symptoms. Mechanistically, WZYD activated the NRF2 signaling pathway; moreover, the action of WZYD involved the down-regulation of PGK1 mediated by MZF1, which promoted the activation of the NRF2 pathway. This study advances our understanding of the intricate mechanisms driving WZYD's efficacy, paving the way for novel treatments in migraine management.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Jiayan Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Zhenhua Shi
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu, 215500, Jiangsu Province, China.
| | - Ziyang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Yijing Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Xiaoyang Ling
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China.
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu, 215500, Jiangsu Province, China.
| |
Collapse
|
7
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
8
|
Shao Y, Fan X, Yang X, Li S, Huang L, Zhou X, Zhang S, Zheng M, Sun J. Impact of Cuproptosis-related markers on clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: A multi-omic analysis. Comput Struct Biotechnol J 2023; 21:3383-3403. [PMID: 37389187 PMCID: PMC10300104 DOI: 10.1016/j.csbj.2023.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Background Cuproptosis, a novel identified cell death form induced by copper, is characterized by aggregation of lipoylated mitochondrial enzymes and the destabilization of Fe-S cluster proteins. However, the function and potential clinical value of cuproptosis and cuproptosis-related biomarkers in colorectal cancer (CRC) remain largely unknown. Methods A comprehensive multi-omics (transcriptomics, genomics, and single-cell transcriptome) analysis was performed for identifying the influence of 16 cuproptosis-related markers on clinical status, molecular functions and tumor microenvironment (TME) in CRC. A novel cuproptosis-related scoring system (CuproScore) based on cuproptosis-related markers was also constructed to predict the prognosis of CRC individuals, TME and the response to immunotherapy. In addition, our transcriptome cohort of 15 paired CRC tissue, tissue-array, and various assays in 4 kinds of CRC cell lines in vitro were applied for verification. Results Cuproptosis-related markers were closely associated with both clinical prognosis and molecular functions. And the cuproptosis-related molecular phenotypes and scoring system (CuproScore) could distinguish and predict the prognosis of CRC patients, TME, and the response to immunotherapy in both public and our transcriptome cohorts. Besides, the expression, function and clinical significance of these markers were also checked and analyzed in CRC cell lines and CRC tissues in our own cohorts. Conclusions In conclusion, we indicated that cuproptosis and CPRMs played a significant role in CRC progression and in modeling the TME. Inducing cuproptosis may be a useful tool for tumor therapy in the future.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|