1
|
Wang J, Zhou T. Unveiling gut microbiota's role: Bidirectional regulation of drug transport for improved safety. Med Res Rev 2025; 45:311-343. [PMID: 39180410 DOI: 10.1002/med.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
Collapse
Affiliation(s)
- Jinyi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Huber AD, Lin W, Poudel S, Miller DJ, Chen T. PROTAC-mediated activation, rather than degradation, of a nuclear receptor reveals complex ligand-receptor interaction network. Structure 2024; 32:2352-2363.e8. [PMID: 39389062 DOI: 10.1016/j.str.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules containing a ligand for a protein of interest linked to an E3 ubiquitin ligase ligand that induce protein degradation through E3 recruitment to the target protein. Small changes in PROTAC linkers can have drastic consequences, including loss of degradation activity, but the structural mechanisms governing such changes are unclear. To study this phenomenon, we screened PROTACs of diverse targeting modalities and identified dTAG-13 as an activator of the xenobiotic-sensing pregnane X receptor (PXR), which promiscuously binds various ligands. Characterization of dTAG-13 analogs and precursors revealed interplay between the PXR-binding moiety, linker, and E3 ligand that altered PXR activity without inducing degradation. A crystal structure of PXR ligand binding domain bound to a precursor ligand showed ligand-induced binding pocket distortions and a linker-punctured tunnel to the protein exterior at a region incompatible with E3 complex formation, highlighting the effects of linker environment on PROTAC activity.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA.
| |
Collapse
|
3
|
Shen Z, Wang J, Chen Y, Fang P, Yuan A, Chen AF, Yan X, Lyu Y, Pu J. Activation of nuclear receptor pregnane-X-receptor protects against abdominal aortic aneurysm by inhibiting oxidative stress. Redox Biol 2024; 77:103397. [PMID: 39427444 PMCID: PMC11534186 DOI: 10.1016/j.redox.2024.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition, but effective medications to prevent its progression and rupture are currently lacking. The nuclear receptor pregnane-X-receptor (PXR) plays a crucial role in vascular homeostasis. However, the role of PXR in AAA development remains unknown. We first detected the PXR expression in human and murine AAA tissues by RT-qPCR and Western blot. To investigate the potential role of PXR in the development of AAA, we used adeno-associated virus-mediated overexpression of PXR and pharmacological activation of PXR by ginkgolide A (GA) in mouse AAA models induced by both angiotensin II (AngII) and calcium phosphate [Ca3(PO4)2]. The underlying mechanism was further explored using RNA-sequencing and molecular biological analyses. We found a significant decrease in both mRNA and protein levels of PXR in both human and murine aortic smooth muscle cells from AAA tissues, accompanied with phenotypic switching of vascular smooth muscle cell and increased oxidative stress. PXR overexpression in abdominal aortas and GA treatment successfully suppressed AAA formation in both mouse AAA models. RNA-sequencing data revealed that PXR activation inhibited gamma-aminobutyric acid type A receptor subunit alpha3 (GABRA3) expression. Additional mechanistic studies identified that PXR suppressed AAA through mitigating GABRA3-induced reactive oxygen species (ROS) generation and subsequent phosphorylation of c-Jun N-terminal kinase (JNK). Interestingly, p-JNK was found to induce ubiquitin-proteasome degradation of PXR. In summary, our data unveiled, for the first time, the protective role of PXR against AAA pathogenesis by inhibiting oxidative stress. These findings suggested PXR as a promising therapeutic target for AAA.
Collapse
MESH Headings
- Pregnane X Receptor/metabolism
- Pregnane X Receptor/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Oxidative Stress/drug effects
- Animals
- Humans
- Mice
- Disease Models, Animal
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
Collapse
Affiliation(s)
- Zhi Shen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinxi Wang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yifei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Peiliang Fang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyan Lyu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
4
|
Huber AD, Jung YH, Li Y, Lin W, Wu J, Poudel S, Carrigan AG, Mishra A, High AA, Chen T. First-in-Class Small Molecule Degrader of Pregnane X Receptor Enhances Chemotherapy Efficacy. J Med Chem 2024; 67:18549-18575. [PMID: 39405362 PMCID: PMC11584202 DOI: 10.1021/acs.jmedchem.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Pregnane X receptor (PXR) is a ligand-activated transcription factor that binds diverse compounds and upregulates drug metabolism machinery in response. PXR activation is detrimental to drug efficacy and safety because it reduces active drug concentrations and increases reactive metabolites, leading to toxicity and/or drug-drug interactions. Thus, effort must be expended in drug development pipelines to assess PXR activation by lead candidates and chemically modify agonists to reduce PXR liabilities while maintaining on-target potencies. Coadministration of drugs with PXR antagonists could prevent PXR-mediated metabolism events, but such compounds are rare and may themselves be converted to agonists by metabolic enzymes or PXR mutations. Here, we report the design, synthesis, optimization, and biological validation of proteolysis targeting chimeras that induce PXR degradation through E3 ubiquitin ligase recruitment. PXR degradation blocks agonist-induced gene expression and enhances anticancer effects of the chemotherapy paclitaxel, a known PXR agonist and substrate of downstream metabolic enzymes.
Collapse
Affiliation(s)
- Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Annalise G. Carrigan
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN, 38105-3678, USA
| |
Collapse
|
5
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|