1
|
Wen X, Zhao T, Yang H, Shi M, Wee XJ, Fu J, Lin M, Zhang Z, Zou M, Green D, Wu X, Chen X, Zhang J. Development of [ 225Ac]Ac‑LNC1011 for targeted alpha-radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07155-9. [PMID: 39992401 DOI: 10.1007/s00259-025-07155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) radioligand therapy (PRLT) has become a promising option for treating metastatic castration-resistant prostate cancer (mCRPC). Radioligands labelled with the 68Ga/177Lu theranostic pair have been most widely used in the clinic for diagnosis and therapy, respectively. This study aims to develop a novel PSMA-targeted radioligand, LNC1011, radiolabeled with alpha-emitter 225Ac, to optimise pharmacokinetic properties and assess its potential for targeted alpha therapy (TAT) in prostate cancer treatment. METHODS LNC1011 (Dan-PSMA) was synthesised based on a PSMA-binding ligand with the addition of a dansylated amino acid. Systematic radiochemical analyses were conducted to confirm the successful synthesis and radiolabelling of [225Ac]Ac-LNC1011. Cell uptake and competition binding assays were performed in PSMA-positive PC3-PIP tumour cells to evaluate the binding affinity and PSMA targeting specificity. The pharmacokinetics properties and tumour uptake were characterised by biodistribution studies using healthy mice and a PC3-PIP xenograft mouse model injected with [225Ac]Ac-LNC1011. Radioligand therapy studies and maximum tolerated dose (MTD) assays were conducted to systematically evaluate the therapeutic efficacy and the safety of [225Ac]Ac-LNC1011. RESULTS [225Ac]Ac-LNC1011 was successfully radiolabelled with high radiochemical purity (> 97%) and high stability within 96 h (radiochemical purity > 96%). The high binding affinity of LNC1011 (IC50 = 16.28 nM) to PSMA was comparable to that of PSMA-617 (IC50 = 27.93 nM). Biodistribution studies confirmed that [225Ac]Ac-LNC1011 had moderate blood elimination half-life (T1/2z = 13.4 ± 0.57 h), which was at an optimised level between [225Ac]Ac-PSMA-617 (T1/2z = 5.19 ± 0.12 h) and [225Ac]Ac-PSMA-EB-01 (T1/2z = 25.18 ± 2.78 h). In addition, high tumour uptake of [225Ac]Ac-LNC1011 was identified to be 38.28 ± 10.04%ID/g at 1 h post-injection. The specific uptake gradually increased and peaked at 24 h (80.57 ± 3.00%ID/g) and persisted at a high level up to 72 h post-injection (50.58 ± 5.37%ID/g). Targeted alpha therapy results showed the complete inhibition of PC3-PIP tumour growth after administration of a single dose of 1 µCi and 0.5 µCi of [225Ac]Ac-LNC1011 similar to 0.5 µCi [225Ac]Ac-PSMA-617. At the 0.1 µCi dose level, partial remission was observed for [225Ac]Ac-LNC1011, as recurrence was found 20 days after administration. In contrast, mice treated with 0.1 µCi [225Ac]Ac-PSMA-617 showed incomplete tumour inhibition under the same conditions. CONCLUSION [225Ac]Ac-LNC1011 was successfully radiolabelled with high radiochemical purity and stability. With significantly improved tumour uptake and retention over PSMA-617, [225Ac]Ac-LNC1011 showed significantly better therapeutic efficacy than [225Ac]Ac-PSMA-617 for targeted alpha therapy of prostate cancer.
Collapse
Affiliation(s)
- Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Hongzhang Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mengqi Shi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xin Jie Wee
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Jiayu Fu
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China
| | - Min Lin
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China
| | - Zhenyue Zhang
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China
| | - Maosheng Zou
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China
| | - David Green
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoming Wu
- Yantai Lannacheng Biotechnology Co., Ltd., Yantai, 264100, China.
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, China.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
- Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore.
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Yong Loo Lin School of Medicine, Theranostics Center of Excellence (TCE), National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
2
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
3
|
Chen J, Pang Y, Liao X, Zhou Y, Luo Q, Wu H, Zuo C, Zhang J, Lin Q, Chen X, Zhao L, Chen H. Development of [ 177Lu]Lu-LNC1010 for peptide receptor radionuclide therapy of nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2024; 52:247-259. [PMID: 39145784 DOI: 10.1007/s00259-024-06874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Somatostatin Receptor 2 (SSTR2)-targeted radiopharmaceutical [68Ga]Ga-DOTATATE has potential advantages in the diagnosis of nasopharyngeal carcinoma (NPC). This study introduces a novel long-lasting SSTR2 analogue, LNC1010, based on DOTATATE, a truncated Evans blue-binding moiety, and a polyethylene-glycol linker. We hypothesised that peptide receptor radionuclide therapy (PRRT) is more effective with [177Lu]Lu-LNC1010 than with [177Lu]Lu-DOTATATE in treating metastatic NPC. METHODS We assessed binding characteristics of LNC1010 in vitro using C666-1 NPC cells and in-vivo pharmacokinetics of [68Ga]Ga/[177Lu]Lu-LNC1010 in C666-1 NPC xenografts via PET and SPECT imaging, biodistribution studies, and PRRT, and compared them with [68Ga]Ga/[177Lu] Lu-labelled DOTATATE. Furthermore, a proof-of-concept approach for imaging and therapy was conducted in a patient with metastatic NPC. RESULTS LNC1010 exhibited strong uptake and specific affinity for SSTR2 in C666-1 NPC cells. PET and SPECT imaging demonstrated higher uptake and longer tumour retention of [68Ga]Ga/[177Lu]Lu-LNC1010 than [68Ga]Ga/[177Lu]Lu-DOTATATE in C666-1 NPC xenografts, indicating its suitability for PRRT applications in NPCs. Biodistribution studies confirmed the higher uptake and prolonged retention of [177Lu]Lu-LNC1010 than [177Lu]Lu-DOTATATE. In preclinical PRRT studies, [177Lu]Lu-LNC1010 showed greater inhibition of tumour growth in C666-1 NPC xenografts than [177Lu]Lu-DOTATATE. In a subsequent pilot clinical study, PRRT with [177Lu]Lu-LNC1010 achieved favourable therapeutic and negligible side effects in a patient with metastatic NPC. CONCLUSION [177Lu]Lu-LNC1010 demonstrated increased tumour uptake and prolonged retention in SSTR2-positive NPCs, with superior anti-tumour efficacy to that of [177Lu]Lu-DOTATATE in preclinical studies. These findings suggest that PRRT with [177Lu]Lu-LNC1010 is a promising treatment for advanced NPC, extending the clinical scope of PRRT beyond neuroendocrine tumours.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Xiyi Liao
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qicong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|