1
|
Gao X, Zhao Y, Wang M, Liu C, Luo J. Theoretical modeling approach for adsorption of fibronectin on the nanotopographical implants. Proc Inst Mech Eng H 2023; 237:1102-1115. [PMID: 37606321 DOI: 10.1177/09544119231188297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The success of orthopedic implants depends on the sufficient integration between tissue and implant, which is influenced by the cellular responses to their microenvironment. The conformation of adsorbed extracellular matrix is crucial for cellular behavior instruction via manipulating the physiochemical features of materials. To investigate the electrostatic adsorption mechanism of fibronectin on nanotopographies, a theoretical model was established to determine surface charge density and Coulomb's force of nanotopography - fibronectin interactions using a Laplace equation satisfying the boundary conditions. Surface charge density distribution of nanotopographies with multiple random fibronectin was simulated based on random number and Monte Carlo hypothesis. The surface charge density on the nanotopographies was compared to the experimental measurements, to verify the effectiveness of the theoretical model. The model was implemented to calculate the Coulomb force generated by nanotopographies to compare the fibronectin adsorption. This model has revealed the multiple random quantitative fibronectin electrostatic adsorption to the nanotopographies, which is beneficial for orthopedic implant surface design.Significance: The conformation and distribution of adsorbed extracellular matrix on biomedical implants are crucial for directing cellular behaviors. However, the Ti nanotopography-ECM interaction mechanism remains largely unknown. This is mostly because of the interactions that are driven by electrostatic force, and any experimental probe could interfere with the electric field between the charged protein and Ti surface. A theoretical model is hereby proposed to simulate the adsorption between nanotopographies and fibronectin. Random number and Monte Carlo hypothesis were applied for multiple random fibronectin simulation, and the Coulomb's force between nanoconvex and nanoconcave structures was comparatively analyzed.
Collapse
Affiliation(s)
- Xiangsheng Gao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Yuhang Zhao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, London, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Erenay B, Sağlam ASY, Garipcan B, Jandt KD, Odabaş S. Bone surface mimicked PDMS membranes stimulate osteoblasts and calcification of bone matrix. BIOMATERIALS ADVANCES 2022; 142:213170. [PMID: 36341745 DOI: 10.1016/j.bioadv.2022.213170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Cellular microenvironments play a crucial role in cell behavior. In addition to the biochemical cues present in the microenvironments, biophysical and biomechanical properties on surfaces have an impact on cellular functionality and eventually cellular fate. Effects of surface topography on cell behavior are being studied extensively in the literature. However, these studies often try to replicate topographical features of tissue surfaces by using techniques such as chemical etching, photolithography, and electrospinning, which may result in the loss of crucial micro- and nano- features on the tissue surfaces such as bone. This study investigates the topographical effects of bone surface by transferring its surface features onto polydimethylsiloxane (PDMS) membranes using soft lithography from a bovine femur. Our results have shown that major features on bone surfaces were successfully transferred onto PDMS using soft lithography. Osteoblast proliferation and calcification of bone matrix have significantly increased along with osteoblast-specific differentiation and maturation markers such as osteocalcin (OSC), osterix (OSX), collagen type I alpha 1 chain (COL1A1), and alkaline phosphatase (ALP) on bone surface mimicked (BSM) PDMS membranes in addition to a unidirectional alignment of osteoblast cells compared to plain PDMS surfaces. This presented bone surface mimicking method can provide a versatile native-like platform for further investigation of intracellular pathways regarding osteoblast growth and differentiation.
Collapse
Affiliation(s)
- Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey
| | - Atiye Seda Yar Sağlam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University, Jena 07743, Germany.
| | - Sedat Odabaş
- Biomaterials and Tissue Engineering Laboratory (BteLAB), Faculty of Science, Department of Chemistry, Ankara University, 06560, Turkey; Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey.
| |
Collapse
|
3
|
Pandey LM. Design of Biocompatible and Self-antibacterial Titanium Surfaces for Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ogura N, Berger MB, Srivas P, Hwang S, Li J, Cohen DJ, Schwartz Z, Boyan BD, Sandhage KH. Tailoring of TiAl6V4 Surface Nanostructure for Enhanced In Vitro Osteoblast Response via Gas/Solid (Non-Line-of-Sight) Oxidation/Reduction Reactions. Biomimetics (Basel) 2022; 7:biomimetics7030117. [PMID: 36134921 PMCID: PMC9496476 DOI: 10.3390/biomimetics7030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
An aging global population is accelerating the need for better, longer-lasting orthopaedic and dental implants. Additive manufacturing can provide patient-specific, titanium-alloy-based implants with tailored, three-dimensional, bone-like architecture. Studies using two-dimensional substrates have demonstrated that osteoblastic differentiation of bone marrow stromal cells (MSCs) is enhanced on surfaces possessing hierarchical macro/micro/nano-scale roughness that mimics the topography of osteoclast resorption pits on the bone surface. Conventional machined implants with these surfaces exhibit successful osseointegration, but the complex architectures produced by 3D printing make consistent nanoscale surface texturing difficult to achieve, and current line-of-sight methods used to roughen titanium alloy surfaces cannot reach all internal surfaces. Here, we demonstrate a new, non-line-of-sight, gas/solid-reaction-based process capable of generating well-controlled nanotopographies on all open (gas-exposed) surfaces of titanium alloy implants. Dense 3D-printed titanium-aluminum-vanadium (TiAl6V4) substrates were used to evaluate the evolution of surface nanostructure for development of this process. Substrates were either polished to be smooth (for easier evaluation of surface nanostructure evolution) or grit-blasted and acid-etched to present a microrough biomimetic topography. An ultrathin (90 ± 16 nm) conformal, titania-based surface layer was first formed by thermal oxidation (600 °C, 6 h, air). A calciothermic reduction (CaR) reaction (700 °C, 1 h) was then used to convert the surface titania (TiO2) into thin layers of calcia (CaO, 77 ± 16 nm) and titanium (Ti, 51 ± 20 nm). Selective dissolution of the CaO layer (3 M acetic acid, 40 min) then yielded a thin nanoporous/nanorough Ti-based surface layer. The changes in surface nanostructure/chemistry after each step were confirmed by scanning and transmission electron microscopies with energy-dispersive X-ray analysis, X-ray diffraction, selected area electron diffraction, atomic force microscopy, and mass change analyses. In vitro studies indicated that human MSCs on CaR-modified microrough surfaces exhibited increased protein expression associated with osteoblast differentiation and promoted osteogenesis compared to unmodified microrough surfaces (increases of 387% in osteopontin, 210% in osteocalcin, 282% in bone morphogenic protein 2, 150% in bone morphogenic protein 4, 265% in osteoprotegerin, and 191% in vascular endothelial growth factor). This work suggests that this CaR-based technique can provide biomimetic topography on all biologically facing surfaces of complex, porous, additively manufactured TiAl6V4 implants.
Collapse
Affiliation(s)
- Naotaka Ogura
- School of Materials Engineering, Purdue University, W. Lafayette, IN 47907, USA
| | - Michael B. Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Pavan Srivas
- School of Materials Engineering, Purdue University, W. Lafayette, IN 47907, USA
| | - Sunghwan Hwang
- School of Materials Engineering, Purdue University, W. Lafayette, IN 47907, USA
| | - Jiaqi Li
- School of Materials Engineering, Purdue University, W. Lafayette, IN 47907, USA
| | - David Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: (Z.S.); (B.D.B.); (K.H.S.)
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: (Z.S.); (B.D.B.); (K.H.S.)
| | - Kenneth H. Sandhage
- School of Materials Engineering, Purdue University, W. Lafayette, IN 47907, USA
- Correspondence: (Z.S.); (B.D.B.); (K.H.S.)
| |
Collapse
|
5
|
Das A, Saxena V, Bhardwaj A, Rabha S, Pandey LM, Dobbidi P. Microstructural, interfacial, biological and electrical activity in sputtered Hydroxyapatite-Barium strontium titanate bilayered thin films. SURFACES AND INTERFACES 2022; 31:102063. [DOI: 10.1016/j.surfin.2022.102063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
6
|
Hasan A, Bagnol R, Owen R, Latif A, Rostam HM, Elsharkawy S, Rose FRAJ, Rodríguez-Cabello JC, Ghaemmaghami AM, Eglin D, Mata A. Mineralizing Coating on 3D Printed Scaffolds for the Promotion of Osseointegration. Front Bioeng Biotechnol 2022; 10:836386. [PMID: 35832405 PMCID: PMC9271852 DOI: 10.3389/fbioe.2022.836386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.
Collapse
Affiliation(s)
- Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Romain Bagnol
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
| | - Robert Owen
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Arsalan Latif
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hassan M. Rostam
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sherif Elsharkawy
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Felicity R. A. J. Rose
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Amir M. Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David Eglin
- Regenerative Orthopaedics, AO Research Institute, Davos, Switzerland
- Ecole des Mines Saint-Etienne, Saint-Étienne, France
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Physicochemical factors of bioprocessing impact the stability of therapeutic proteins. Biotechnol Adv 2022; 55:107909. [PMID: 35031395 DOI: 10.1016/j.biotechadv.2022.107909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
|
8
|
Palkowitz AL, Tuna T, Bishti S, Böke F, Steinke N, Müller‐Newen G, Wolfart S, Fischer H. Biofunctionalization of Dental Abutment Surfaces by Crosslinked ECM Proteins Strongly Enhances Adhesion and Proliferation of Gingival Fibroblasts. Adv Healthc Mater 2021; 10:e2100132. [PMID: 33694324 PMCID: PMC11469217 DOI: 10.1002/adhm.202100132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/14/2022]
Abstract
To ensure the long-term success of dental implants, a functional attachment of the soft tissue to the surface of the implant abutment is decisively important in order to prevent the penetration of bacteria into the implant-bone interface, which can trigger peri-implant disease. Here a surface modification approach is described that includes the covalent immobilization of the extracellular matrix (ECM) proteins fibronectin and laminin via a crosslinker to silanized Ti6Al4V and Y-TZP surfaces. The surface properties are evaluated using static contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The interaction of human gingival fibroblasts (HGFs) with the immobilized ECM proteins is verified by analyzing the localization of focal contacts, cell area, cell morphology, proliferation rate, and integrin expression. It is observed in the presence of fibronectin and laminin an increased cellular attachment, proliferation, and integrin expression of HGFs accompanied by a significantly higher number of focal adhesions. The presented approach holds great potential to enable a stronger bond between soft tissue and implant abutment surface. This could potentially help to prevent the penetration of bacteria in an in vivo application and thus reduce the risk of periimplant disease.
Collapse
Affiliation(s)
- Alena L. Palkowitz
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Taskin Tuna
- Department of Prosthodontics and BiomaterialsRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Shaza Bishti
- Department of Prosthodontics and BiomaterialsRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Frederik Böke
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Nathalie Steinke
- Flow Cytometry FacilityFaculty of Medicine of RWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Gerhard Müller‐Newen
- Institute of Biochemistry and Molecular BiologyConfocal Microscopy FacilityRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Stefan Wolfart
- Department of Prosthodontics and BiomaterialsRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 30Aachen52074Germany
| |
Collapse
|
9
|
Yadav V, Sankar M, Pandey L. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects. JOURNAL OF MAGNESIUM AND ALLOYS 2020; 8:999-1015. [DOI: 10.1016/j.jma.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
10
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
11
|
Pandey LM. Surface engineering of personal protective equipments (PPEs) to prevent the contagious infections of SARS-CoV-2. SURFACE ENGINEERING 2020; 36:901-907. [DOI: 10.1080/02670844.2020.1801034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 05/15/2025]
Affiliation(s)
- Lalit M. Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|