1
|
Ma W, Zhen S, Shan X, Liu Y, Liang Q, Yang C, Ding R, Meng L, Yao H. Multi-responsive biosensor prepared based on MXene and PDEA-HRP binary architecture films for H 2O 2 detection and logic gate construction. Talanta 2025; 285:127361. [PMID: 39700722 DOI: 10.1016/j.talanta.2024.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The quantitative detection of H2O2 is of great significance for preventing the occurrence of diseases. In this work, an electrochemical biosensor for detecting H2O2 was constructed through a step-by-step modification method. The PDEA-HRP/MXene/PG biosensor (PDEA = poly(N,N-dimethyl acrylamide), HRP = horseradish peroxidase, PG = pyrolytic graphite) was prepared with two-dimensional metal carbide (MXene) nano materials as the inner layer and PDEA-HRP hydrogel as the outer layer for the detection of H2O2. Due to the excellent conductivity and biocompatibility of MXene materials, the prepared PDEA-HRP/MXene/PG biosensors have high sensitivity, wide linear range, and good repeatability. The results indicated that under optimal conditions, the prepared biosensor can detect H2O2 concentration within a linear range of 0.04 mM ∼ 1.80 mM, with the detection limit of 1.08 × 10-3 mM (S/N = 3). The detection effect was good in actual samples. In addition, based on the switching properties of PDEA-HRP hydrogel under different conditions, combined with the characteristics of MXene nanomaterials. This study also constructed several biomolecule electrocatalytic logic gate systems, including binary 5-Input/5-Output logic gate network, 2-to-4 decoder, and a ternary AND logic gates.
Collapse
Affiliation(s)
- Wenzheng Ma
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Shuxue Zhen
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoyan Shan
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Ying Liu
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Qiulong Liang
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004, China
| | - Runmei Ding
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingchen Meng
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| | - Huiqin Yao
- College of Public Health, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Mejia-Mendez JL, Reza-Zaldívar EE, Sanchez-Martinez A, Ceballos-Sanchez O, Navarro-López DE, Marcelo Lozano L, Armendariz-Borunda J, Tiwari N, Jacobo-Velázquez DA, Sanchez-Ante G, López-Mena ER. Exploring the cytotoxic and antioxidant properties of lanthanide-doped ZnO nanoparticles: a study with machine learning interpretation. J Nanobiotechnology 2024; 22:687. [PMID: 39523303 PMCID: PMC11552316 DOI: 10.1186/s12951-024-02957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lanthanide-based nanomaterials offer a promising alternative for cancer therapy because of their selectivity and effectiveness, which can be modified and predicted by leveraging the improved accuracy and enhanced decision-making of machine learning (ML) modeling. METHODS In this study, erbium (Er3+) and ytterbium (Yb3+) were used to dope zinc oxide (ZnO) nanoparticles (NPs). Various characterization techniques and biological assays were employed to investigate the physicochemical and optical properties of the (Er, Yb)-doped ZnO NPs, revealing the influence of the lanthanide elements. RESULTS The (Er, Yb)-doped ZnO NPs exhibited laminar-type morphologies, negative surface charges, and optical bandgaps that vary with the presence of Er3+ and Yb3+. The incorporation of lanthanide ions reduced the cytotoxicity activity of ZnO against HEPG-2, CACO-2, and U87 cell lines. Conversely, doping with Er3+ and Yb3+ enhanced the antioxidant activity of the ZnO against DPPH, ABTS, and H2O2 radicals. The extra tree (ET) and random forest (RF) models predicted the relevance of the characterization results vis-à-vis the cytotoxic properties of the synthesized NPs. CONCLUSION This study demonstrates, for the first time, the synthesis of ZnO NPs doped with Er and Yb via a solution polymerization route. According to characterization results, it was unveiled that the effect of optical bandgap variations influenced the cytotoxic performance of the developed lanthanide-doped ZnO NPs, being the undoped ZnO NPs the most cytotoxic ones. The presence alone or in combination of Er and Yb enhanced their scavenging capacity. ML models such as ET and RF efficiently demonstrated that the concentration and cell line type are key parameters that influence the cytotoxicity of (Er, Yb)-doped ZnO NPs achieving high accuracy rates of 98.96% and 98.67%, respectively. This study expands the knowledge of lanthanides as dopants of nanomaterials for biological and medical applications and supports their potential in cancer therapy by integrating robust ML approaches.
Collapse
Affiliation(s)
- Jorge L Mejia-Mendez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula, Puebla, 72810, Mexico
| | - Edwin E Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45201, Mexico
| | - A Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial los Belenes, Zapopan, Jalisco, 45157, México
| | - O Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial los Belenes, Zapopan, Jalisco, 45157, México
| | - Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
| | - L Marcelo Lozano
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, 44340, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), , University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782, Santiago de Compostela, A Coruna, 15782, Mexico.
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45201, Mexico.
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan, Jalisco, 45138, Mexico.
| |
Collapse
|
3
|
Yang Z, Tian Z, Qi C. Potassium single-atoms anchoring on three-dimensional porous N-doped carbon material as sensing material for boosting electrochemical sensing of hydrogen peroxide. Mikrochim Acta 2024; 191:536. [PMID: 39143359 DOI: 10.1007/s00604-024-06609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
For the first time potassium single-atoms (K SA) are explored as the sensing material to boost electrochemical sensing of hydrogen peroxide (H2O2). The N-doped carbon material with a three-dimensional porous structure (3D NG) was prepared using NaCl as the template, and K SA were anchored to the surface of 3D NG through high-temperature pyrolysis. The structure of K SA/3D NG was characterized by TEM, HAADF-STEM, XPS, and XRD. The results of electrochemical studies indicate that K SA play a crucial role in promoting the electrocatalytic reduction of H2O2, which not only optimized the adsorption strength for H2O2 but also improved the electron transfer rate, therefore improving the sensitivity for detecting H2O2. This study demonstrates the excellent electrocatalytic activity of K SA, which provides a promising sensing material for the detection of H2O2 and lays the foundation for the application of alkali metal single-atoms in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China.
| | - Zhigao Tian
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China
| | - Chengcheng Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Ramesh M, Umamatheswari S, Vivek PM, Sankar C, Jayavel R. Synthesis of silver‑bismuth oxide encapsulated hydrazone functionalized chitosan (AgBi 2O 3/FCS) nanocomposite for electrochemical sensing of glucose, H 2O 2 and Escherichia coli O157:H7. Int J Biol Macromol 2024; 264:130533. [PMID: 38428782 DOI: 10.1016/j.ijbiomac.2024.130533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
In this work, silver‑bismuth oxide encapsulated 1,3,5-triazine-bis(4-methylbenzenesulfonyl)-hydrazone functionalized chitosan (SBO/FCS) nanocomposite was synthesized by a simple hydrothermal method. The amine (-NH2) group was functionalized by the addition of cyanuric acid chloride followed by 4-methylbenzenesulfonol hydrazide. The SBO/FCS has been characterized by FT-IR, X-ray diffraction, XPS, HR-SEM, HR-TEM, AFM, and thermogravimetry (TGA). Under the optimum conditions, the SBO/FCS sensor showed brilliant electrochemical accomplishment for the sensing of glucose and H2O2 by a limit of detection (LOD) of 0.057 μM and 0.006 μM. It also showed linearity for glucose 0.008-4.848 mM and for H2O2 of 0.01-6.848 mM. Similarly, the sensor exhibited a low sensitivity to glucose (32 μA mM-1 cm-2) and a good sensitivity to H2O2 (295 μA mM-1 cm-2). In addition, that the prepared electrode could be used to sense the glucose and H2O2 levels in real samples such as blood serum and HeLa cell lines. The screen printed electrode (SPE) immunosensor could sense the E. coli O157:H7 concurrently and quantitatively with a linear range of 1.0 × 101-1.0 × 109 CFU mL-1 and a LOD of 4 CFU mL-1. Likewise, the immunosensor efficiently detect spiked E. coli O157:H7 in milk, chicken, and pork samples, with recoveries ranging from 89.70 to 104.72 %, demonstrating that the immunosensor was accurate and reliable.
Collapse
Affiliation(s)
- M Ramesh
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India
| | - S Umamatheswari
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India.
| | - P M Vivek
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology (Deemed University), Chennai 600 062, Tamil Nadu, India
| | - C Sankar
- Department of Chemistry, Velammal College of Engineering and Technology, Madurai 625 009, Tamil Nadu, India.
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
5
|
Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T, Arshi N. Synergism of Holmium Orthovanadate/Phosphorus-Doped Carbon Nitride Nanocomposite: Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Inorg Chem 2024; 63:3019-3027. [PMID: 38286799 PMCID: PMC10865356 DOI: 10.1021/acs.inorgchem.3c03804] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Developing efficient and robust electrode materials for electrochemical sensors is critical for real-time analysis. In this paper, a hierarchical holmium vanadate/phosphorus-doped graphitic carbon nitride (HoVO4/P-CN) nanocomposite is synthesized and used as an electrode material for electrochemical detection of hydrogen peroxide (H2O2). The HoVO4/P-CN nanocomposite exhibits superior electrocatalytic activity at a peak potential of -0.412 V toward H2O2 reduction in alkaline electrolytes while compared with other reported electrocatalysts. The HoVO4/P-CN electrochemical platform operated under the optimized conditions shows excellent analytical performance for H2O2 detection with a linear concentration range of 0.009-77.4 μM, a high sensitivity of 0.72 μA μM-1 cm-2, and a low detection limit of 3.0 nΜ. Furthermore, the HoVO4/P-CN-modified electrode exhibits high selectivity, remarkable stability, good repeatability, and satisfactory reproducibility in detecting H2O2. Its superior performance can be attributed to a large specific surface area, high conductivity, more active surface sites, unique structure, and synergistic action of HoVO4 and P-CN to benefit enhanced electrochemical activity. The proposed HoVO4/P-CN electrochemical platform is effectively applied to ascertain the quantity of H2O2 in food and biological samples. This work outlines a promising and effectual strategy for the sensitive electrochemical detection of H2O2 in real-world samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department
of Applied Sciences & Humanities, Faculty of Engineering &
Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Thamraa Alshahrani
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nishat Arshi
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Chen YA, Shie MY, Ho CC, Ye SW, Chen IWP, Shih YY, Shen YF, Chen YW. A novel label-free electrochemical immunosensor for the detection of heat shock protein 70 of lung adenocarcinoma cell line following paclitaxel treatment using l-cysteine-functionalized Au@MnO 2/MoO 3 nanocomposites. RSC Adv 2023; 13:29847-29861. [PMID: 37842680 PMCID: PMC10568263 DOI: 10.1039/d3ra03620k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
The future trend in achieving precision medicine involves the development of non-invasive cancer biomarker sensors that offer high accuracy, low cost, and time-saving benefits for risk clarification, early detection, disease detection, and therapeutic monitoring. A facile approach for the synthesis of MoO3 nanosheets was developed by thermally oxidizing MoS2 nanosheets in air followed by thermal annealing. Subsequently, Au@MnO2 nanocomposites were prepared using a combined hydrothermal process and in situ chemical synthesis. In this study, we present a novel immunosensor design strategy involving the immobilization of antiHSP70 antibodies on Au@MnO2/MoO3 nanocomposites modified on a screen-printed electrode (SPE) using EDC/NHS chemistry. This study establishes HSP70 as a potential biomarker for monitoring therapeutic response during anticancer therapy. Impedance measurements of HSP70 on the Au@MnO2/MoO3/SPE immunosensor using EIS showed an increase in impedance with an increase in HSP70 concentration. The electrochemical immunosensor demonstrated a good linear response in the range of 0.001 to 1000 ng mL-1 with a detection limit of 0.17 pg mL-1 under optimal conditions. Moreover, the immunosensor was effective in detecting HSP70 at low concentrations in a lung adenocarcinoma cell line following Paclitaxel treatment, indicating its potential for early detection of the HSP70 biomarker in organ-on-a-chip and clinical applications.
Collapse
Affiliation(s)
- Yi-An Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital Taichung City 404332 Taiwan
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital Taichung City 404332 Taiwan
- The Master Program for Biomedical Engineering, China Medical University Taichung City 406040 Taiwan
- Department of Biomedical Engineering, China Medical University Taichung City 40447 Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University Taichung City 41354 Taiwan
| | - Sheng-Wen Ye
- The Master Program for Biomedical Engineering, China Medical University Taichung City 406040 Taiwan
| | - I-Wen Peter Chen
- Department of Chemistry, National Cheng Kung University Tainan 70101 Taiwan
| | - Yu-Yin Shih
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital Taichung City 404332 Taiwan
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University Taichung City 41354 Taiwan
| | - Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital Taichung City 404332 Taiwan
- The Master Program for Biomedical Engineering, China Medical University Taichung City 406040 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung City 41354 Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University Taichung City 40447 Taiwan
| |
Collapse
|
7
|
Zhang C, Yin H, Bai X, Yang Z. Ru doping induced lattice distortion of Cu nanoparticles for boosting electrochemical nonenzymatic hydrogen peroxide sensing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Lai Y, Yu B, Lin T, Hou L. Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide. BIOSENSORS 2023; 13:585. [PMID: 37366950 DOI: 10.3390/bios13060585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
A multicolor visual method for the detection of hydrogen peroxide (H2O2) was reported based on the iodide-mediated surface etching of gold nanostar (AuNS). First, AuNS was prepared by a seed-mediated method in a HEPES buffer. AuNS shows two different LSPR absorbance bands at 736 nm and 550 nm, respectively. Multicolor was generated by iodide-mediated surface etching of AuNS in the presence of H2O2. Under the optimized conditions, the absorption peak Δλ had a good linear relationship with the concentration of H2O2 with a linear range from 0.67~66.67 μmol L-1, and the detection limit is 0.44 μmol L-1. It can be used to detect residual H2O2 in tap water samples. This method offered a promising visual method for point-of-care testing of H2O2-related biomarkers.
Collapse
Affiliation(s)
- Yunping Lai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Beirong Yu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
Shen H, Liu J, Pan P, Yang X, Yang Z, Li P, Liu G, Zhang X, Zhou J. One-step synthesis of nanosilver embedding laser-induced graphene for H 2O 2 sensor. SYNTHETIC METALS 2023; 293:117235. [PMID: 36567724 PMCID: PMC9768471 DOI: 10.1016/j.synthmet.2022.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
During the novel coronavirus pandemic, hydrogen peroxide (H2O2) played an important role as a disinfectant. However, high concentrations of H2O2 can also cause damage to the skin and eyes. Therefore, the quantitative and qualitative detection of H2O2 is an important research direction. In this work, we report a one-step laser-induced synthesis of graphene doped with Ag NPs composites. It directly trims screen printed electrodes (SPE). Firstly, we did the timekeeping current method (CA) test on H2O2 using a conventional platinum sheet as the counter electrode, and obtained linear ranges of 1-110 μM and 110-800 μM with a sensitivity of 118.7 and 96.3 μAmM-1cm-2 and a low detection limit of (LOD) 0.24 μM and 0.31 μM. On this basis we have also achieved a good result in CA testing using Screen printed carbon electrodes (SPCE), laying the foundation for portable testing. The sensor has excellent interference immunity and high selectivity.
Collapse
Affiliation(s)
- Haodong Shen
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jun Liu
- School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Pan
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoping Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Zhengchun Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Li
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Guanying Liu
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaodong Zhang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jie Zhou
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
10
|
Liu Y, Sun M, Qiao W, Cong S, Zhang Y, Wang L, Hu Z, Liu F, Wang D, Wang P, Liu Q. Multicolor colorimetric visual detection of Staphylococcus aureus based on Fe 3O 4-Ag-MnO 2 composites nano-oxidative mimetic enzyme. Anal Chim Acta 2023; 1239:340654. [PMID: 36628750 DOI: 10.1016/j.aca.2022.340654] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Novel Fe3O4-Ag-MnO2 composites were successfully synthesized. It was noteworthy that the obtained Fe3O4-Ag-MnO2 composites were found to possess three types of enzyme-mimicking activities, including peroxidase-like, catalase-like and oxidase-like activities. Taking advantage of the oxidase properties of Fe3O4-Ag-MnO2, the direct oxidation of TMB could be catalyzed to generate blue oxidation products without H2O2. The oxidase-like activity of Fe3O4-Ag-MnO2 were carefully studied. Based on the Fe3O4-Ag-MnO2-TMB system, a fast, sensitive and intuitive multicolor colorimetric method for Staphylococcus aureus (S. aureus) detection was established under the optimized conditions. The proposed method allows the detection of S. aureus with a detection limit of 3.7 cfu mL-1 and a linear range of 10-106 cfu mL-1. This new colorimetric method has been successfully proved to be applicable to the detection S. aureus of food samples.
Collapse
Affiliation(s)
- Yushen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Mengyue Sun
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Wenteng Qiao
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Yunqian Zhang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Luliang Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Zhenhua Hu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Fangjie Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Dacheng Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Ping Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Quanwen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
11
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Xue F, Qin R, Zhu R, Zhou X. Sn species modified mesoporous zeolite TS-1 with oxygen vacancy for enzyme-free electrochemical H 2O 2 detecting. Dalton Trans 2022; 51:18169-18175. [PMID: 36394274 DOI: 10.1039/d2dt02926j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sn species modified zeolite TS-1 with a unique mesopore structure (Sn-TS-1) and rich oxygen vacancy defects has been designed via a sol-gel method and an ion-exchange process, which can be used as an enzyme-free electrochemical sensor for H2O2 detection. The resultant composite Sn-TS-1 has a high BET surface area of 191 cm2 g-1, fast electron transfer, rich oxygen vacancies, and abundant active sites, showing super performance in H2O2 reduction with a low detection limit (0.27 μM, S/N = 3). The current is linear with H2O2 concentration from 1 to 1000 and 1000 to 11 000 μM, and the corresponding sensitivities are 360.4 and 80.44 μA mM-1 cm-1, respectively. More importantly, this Sn-TS-1 sensor also shows excellent anti-interference ability and stability. This work provides a new idea for an enzyme-free sensor for H2O2 detection in biological environments, which has promising potential in point-of-care (POC) testing for H2O2.
Collapse
Affiliation(s)
- Fengfeng Xue
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China. .,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Ruomeng Qin
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Runwei Zhu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
13
|
Zhang Z, Liu H, Zhai L, Wu J, Li L. Construction of BiOCl-TNTs Photoelectrochemical Sensor for Detection of Hydrogen Peroxide. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|