1
|
Anand A, Sengupta S, Galusek D, Beltrán AM, Galusková D, Boccaccini AR. A new approach to overcome cytotoxic effects of Cu by delivering dual therapeutic ions (Sr, Cu). J Trace Elem Med Biol 2025; 87:127565. [PMID: 39675135 DOI: 10.1016/j.jtemb.2024.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The incorporation of trace elements such as strontium (Sr) and copper (Cu) in the composition of mesoporous bioactive glass (MBG) is widely known to enhance its biological functionality for bone tissue regeneration METHODS: Two MBG powders with the composition 80SiO2-11CaO-5P2O5-xCuO/SrO, one doped with 4 mol.% of CuO, the second with 4 mol.% of SrO were blended in the weight ratios of Cu-MBG: Sr-MBG; 100:0, 70: 30, 50: 50, 30: 70 and 0:100 aiming at minimizing Cu to minimize the cytotoxicity of Cu while preserving its antimicrobial activity. The synergistic effects of Sr and Cu ions on bioactivity, cytotoxicity, and antimicrobial activity were studied. RESULTS Transmission electron microscopy (TEM) examination of Cu-MBG and Sr-MBG showed fringes related to the development of a mesoporous structure. The specific surface area values of the Cu-MBG and Sr-MBG powders were 287 and 349 m2/g, respectively. A characteristic compact layer consisting of particles with platelet-like morphology commonly associated with HAp crystals was confirmed after 7 days soaking in simulated body fluid (SBF). Mouse preosteoblast cells (MC3T3-E1) exhibited higher cell viability when exposed to a 1 % w/v eluate from blended Cu-MBG powders compared to pure Cu-MBG. Notably, the Cu-MBG: Sr-MBG ratio of 30:70 exhibited cell viability of around 85 % at this concentration. A higher cell viability (above 100 %) towards MC3T3-E1 cells was observed for all powders when tested with the 0.1 % w/v eluate. With progressive increase in the amount of Cu-MBG in the blended system the bacterial inhibitory effects were more pronounced. The Cu ions released from Cu-MBG generate hydroxyl ions and increase the pH leading to disruption of the cellular membrane of microbes, resulting in enhanced antimicrobial activity. CONCLUSION This newly developed blended system composed of Cu and Sr doped MBGs is expected to be more effective as bioactive filler in comparison to single ion doped MBGs for bone tissue engineering applications.
Collapse
Affiliation(s)
- Akrity Anand
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Susanta Sengupta
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD, and FChPT STU, Trenčín 91150, Slovakia
| | - Ana M Beltrán
- Departamento de Ingenieria y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Uni-versidad de Sevilla, Seville 41011, Spain
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| |
Collapse
|
2
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
3
|
Huang C, Zhou J, Rao J, Zhao X, Tian X, He F, Shi H. Fabrication of strontium carbonate-based composite bioceramics as potential bone regenerative biomaterials. Colloids Surf B Biointerfaces 2022; 218:112755. [PMID: 35973237 DOI: 10.1016/j.colsurfb.2022.112755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
Strontium carbonate (SrC) bioceramics are proposed as potential biomaterials to efficaciously repair the bone defects. However, the development of SrC bioceramics is restricted by their intrinsic low mechanical strength. In this study, SrC-based composite bioceramics (SrC-SrP) were fabricated by incorporating strontium-containing phosphate glass (SrP). The results indicated that aside from the main crystalline phase SrC, new compounds were generated in the SrC-SrP bioceramics. Incorporating 10 wt% SrP promoted densification, thus dramatically improving compressive strength of SrC-SrP bioceramics. The SrC-SrP bioceramics facilitated apatite precipitation on their surface, and sustainedly released strontium, phosphorus and sodium ions. Compared with the well-known β-tricalcium phosphate bioceramics, the SrC-SrP bioceramics with certain amounts of SrP enhanced proliferation, alkaline phosphatase activity and osteogenesis-related gene expressions of mouse bone mesenchymal stem cells. The SrC-SrP bioceramics with appropriate constituent can serve as novel bone regenerative biomaterials.
Collapse
Affiliation(s)
- Changgui Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jielin Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jin Rao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinyi Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiumei Tian
- The School of Biomedical Engineering, and Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China; Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
4
|
Fiorilli S, Pagani M, Boggio E, Gigliotti CL, Dianzani C, Gauthier R, Pontremoli C, Montalbano G, Dianzani U, Vitale-Brovarone C. Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study. NANOMATERIALS 2021; 11:nano11020321. [PMID: 33513769 PMCID: PMC7911784 DOI: 10.3390/nano11020321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Osteoporotic bone fractures represent a critical clinical issue and require personalized and specific treatments in order to stimulate compromised bone tissue regeneration. In this clinical context, the development of smart nano-biomaterials able to synergistically combine chemical and biological cues to exert specific therapeutic effects (i.e., pro-osteogenic, anti-clastogenic) can allow the design of effective medical solutions. With this aim, in this work, strontium-containing mesoporous bioactive glasses (MBGs) were bio-functionalized with ICOS-Fc, a molecule able to reversibly inhibit osteoclast activity by binding the respective ligand (ICOS-L) and to induce a decrease of bone resorption activity. N2 adsorption analysis and FT-IR spectroscopy were used to assess the successful grafting of ICOS-Fc on the surface of Sr-containing MBGs, which were also proved to retain the peculiar ability to release osteogenic strontium ions and an excellent bioactivity after functionalization. An ELISA-like assay allowed to confirm that grafted ICOS-Fc molecules were able to bind ICOS-L (the ICOS binding ligand) and to investigate the stability of the amide binding to hydrolysis in aqueous environment up to 21 days. In analogy to the free form of the molecule, the inhibitory effect of grafted ICOS-Fc on cell migratory activity was demonstrated by using ICOSL positive cell lines and the ability to inhibit osteoclast differentiation and function was confirmed by monitoring the differentiation of monocyte-derived osteoclasts (MDOCs), which revealed a strong inhibitory effect, also proven by the downregulation of osteoclast differentiation genes. The obtained results showed that the combination of ICOS-Fc with the intrinsic properties of Sr-containing MBGs represents a very promising approach to design personalized solutions for patients affected by compromised bone remodeling (i.e., osteoporosis fractures).
Collapse
Affiliation(s)
- Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
- Correspondence:
| | - Mattia Pagani
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
| | - Elena Boggio
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy; (E.B.); (C.L.G.)
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Casimiro Luca Gigliotti
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy; (E.B.); (C.L.G.)
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Chiara Dianzani
- Department of Drug Science and Technology, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy;
| | - Rémy Gauthier
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
| | - Carlotta Pontremoli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.P.); (R.G.); (C.P.); (G.M.); (C.V.-B.)
| |
Collapse
|
5
|
Pouroutzidou GK, Liverani L, Theocharidou A, Tsamesidis I, Lazaridou M, Christodoulou E, Beketova A, Pappa C, Triantafyllidis KS, Anastasiou AD, Papadopoulou L, Bikiaris DN, Boccaccini AR, Kontonasaki E. Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. Int J Mol Sci 2021; 22:E577. [PMID: 33430065 PMCID: PMC7827177 DOI: 10.3390/ijms22020577] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol-gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Anna Theocharidou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Ioannis Tsamesidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.P.); (I.T.)
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Maria Lazaridou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Evi Christodoulou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Anastasia Beketova
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
| | - Christina Pappa
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Konstantinos S. Triantafyllidis
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK;
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (E.C.); (C.P.); (K.S.T.); (D.N.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Eleana Kontonasaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.B.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Mosqueira L, Barrioni BR, Martins T, Ocarino NDM, Serakides R, Pereira MDM. In vitro effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. ACTA ACUST UNITED AC 2020; 15:055023. [PMID: 32375130 DOI: 10.1088/1748-605x/ab9095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a metabolic disease that affects bone tissue and is highly associated with bone fractures. Typical osteoporosis fracture treatments, such as bisphosphonates and hormone replacement, present important challenges because of their low bioavailability on the site of action. Options to overcome this issue are systems for the local release of therapeutic agents such as bioactive glasses containing therapeutic molecules and ions. These agents are released during the dissolution process, combining the drugs and ion therapeutic effects for osteoporosis treatment. Among the therapeutic agents that can be applied for bone repair are strontium (Sr) ion and phytopharmaceutical icariin, which have shown potential to promote healthy bone marrow stem cells osteogenic differentiation, increase bone formation and prevent bone loss. Submicron Sr-containing bioactive glass mesoporous spheres with sustained ion release capacity were obtained. Icariin was successfully incorporated into the particles, and the glass composition influenced the icariin incorporation efficiency and release rates. In this work, for the first time, Sr and icariin were incorporated into bioactive glass submicron mesoporous spheres and the in vitro effects of the therapeutic agents release were evaluated on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells, and results showed an improvement on the reduced differentiation potential.
Collapse
Affiliation(s)
- Layla Mosqueira
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Huang D, Zhao F, Gao W, Chen X, Guo Z, Zhang W. Strontium-substituted sub-micron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway. Regen Biomater 2020; 7:303-311. [PMID: 32523732 PMCID: PMC7266663 DOI: 10.1093/rb/rbaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/12/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Strontium-substituted bioactive glass (Sr-BG) has shown superior performance in bone regeneration. Sr-BG-induced osteogenesis has been extensively studied; however, Sr-BG-mediated osteoclastogenesis and the underlying molecular mechanism remain unclear. It is recognized that the balance of osteogenesis and osteoclastogenesis is closely related to bone repair, and the receptor activators of nuclear factor kappaB ligand (RANKL) signaling pathway plays a key role of in the regulation of osteoclastogenesis. Herein, we studied the potential impact and underling mechanism of strontium-substituted sub-micron bioactive glass (Sr-SBG) on RANKL-induced osteoclast activation and differentiation in vitro. As expected, Sr-SBG inhibited RANKL-mediated osteoclastogenesis significantly with the experimental performance of decreased mature osteoclasts formation and downregulation of osteoclastogenesis-related gene expression. Furthermore, it was found that Sr-SBG might suppress osteoclastogenesis by the combined effect of strontium and silicon released through inhibition of RANKL-induced activation of p38 and NF-κB pathway. These results elaborated the effect of Sr-SBG-based materials on osteoclastogenesis through RANKL-induced downstream pathway and might represent a significant guidance for designing better bone repair materials.
Collapse
Affiliation(s)
- Deqiu Huang
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Fujian Zhao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Wendong Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Wen Zhang
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Abstract
Over the past few decades, biomedical scientists and surgeons have given substantial attention to bioactive glasses as promising, long-lasting biomaterials that can make chemical connections with the neighboring hard and soft tissues. Several studies have examined the cellular and molecular responses to bioactive glasses to determine if they are suitable biomaterials for tissue engineering and regenerative medicine. In this regard, different ions and additives have been used recently to induce specific characteristics for selective cellular and molecular responses. This Review briefly describes foreign-body response mechanisms and the role of adsorbed proteins as the key players in starting interactions between cells and biomaterials. It then explains the physicochemical properties of the most common bioactive glasses, which have a significant impact on their cellular and molecular responses. It is expected that, with the development of novel strategies, the physiochemical properties of bioactive glasses can be engineered to precisely control proteins' adsorption and cellular functions after implantation.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 144961-4535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 144961-4535 Tehran, Iran
| |
Collapse
|
9
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
10
|
Farano V, Maurin JC, Attik N, Jackson P, Grosgogeat B, Gritsch K. Sol-gel bioglasses in dental and periodontal regeneration: A systematic review. J Biomed Mater Res B Appl Biomater 2019; 107:1210-1227. [PMID: 30199601 DOI: 10.1002/jbm.b.34214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
Due to their osteoconductive and osteoinductive abilities, bioglasses (BGs) have attracted attention in tissue engineering, especially for mineralized tissue. The aim of this study is to review the current state of the art on the effects of BGs produced by sol-gel on cells for dental and periodontal regeneration. The study also discusses associated antibacterial properties. The research was performed by considering the Preferred Reporting Items for Systematic Reviews and the Meta-Analyses (PRISMA) statement. The research ranged 5 years' window time (from January, 01, 2012, to August, 31, 2017) and the relevant studies were identified based on the inclusion/exclusion criteria. A total of 45 articles were selected from 244 initial returns, plus seven further articles coming from other sources were selected for the same purpose. From this systematic study, it is revealed that only 13 of the 52 articles have proved both the ability of BGs to differentiate dental cells at genetic level and their ability of triggering cell-mediated mineralization, but only six of them showed, along with cells, the antibacterial properties of the glasses. This review shows that sol-gel BGs are not toxic, can sustain cell proliferation and differentiation at a genetic level, and can keep the bacterial population under control. Moreover, a standard methodology and an ideal material are suggested. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1210-1227, 2019.
Collapse
Affiliation(s)
- Vincenzo Farano
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Christophe Maurin
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Nina Attik
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Phil Jackson
- Lucideon Limited, Queens Road, Penkhull, Stoke-on-Trent, Staffordshire, ST4 7LQ, UK
| | - Brigitte Grosgogeat
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Kerstin Gritsch
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Fiorilli S, Molino G, Pontremoli C, Iviglia G, Torre E, Cassinelli C, Morra M, Vitale-Brovarone C. The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses. MATERIALS 2018; 11:ma11050678. [PMID: 29701683 PMCID: PMC5978055 DOI: 10.3390/ma11050678] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/24/2023]
Abstract
Over the recent years, mesoporous bioactive glasses (MBGs) gained interest as bone regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules. In order to improve the bone regeneration ability of MBGs, the incorporation of Sr2+ ions, due to its recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs based on the SiO2–CaO system and containing different percentages (2 and 4 mol %) of strontium were prepared by two synthesis methods, in the form of microspheres and nanoparticles. Sr-containing MBGs were characterized by FE-SEM, XRD and N2 adsorption/desorption analysis. The in vitro bioactivity in SBF resulted excellent. The assessment of fibroblast cell (line L929) viability showed that Sr-containing MBGs were biocompatible both in form of micro- and nanoparticles. The osteogenic response of osteoblast-like SAOS-2 cells was investigated by analysing the expression of GAPDH, COL1a1, RANKL, SPARC, OPG and ALPL genes, as cell differentiation markers. The results indicate that the incorporation of Sr into MBG is beneficial for bone regeneration as promotes a pro-osteogenic effect, paving the way to the design of advanced devices enabled by these nanocarriers also in combination with drug release, for the treatment of bone pathologies, particularly in patients with osteoporosis.
Collapse
Affiliation(s)
- Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Giulia Molino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carlotta Pontremoli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Giorgio Iviglia
- Nobil Bio Ricerche srl, Via Valcastellana 28, 14037 Portacomaro (Asti), Italy.
| | - Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana 28, 14037 Portacomaro (Asti), Italy.
| | - Clara Cassinelli
- Nobil Bio Ricerche srl, Via Valcastellana 28, 14037 Portacomaro (Asti), Italy.
| | - Marco Morra
- Nobil Bio Ricerche srl, Via Valcastellana 28, 14037 Portacomaro (Asti), Italy.
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|