1
|
Weng J, Zhang Q, Yu J, Yu Q, Ye G, Zhou X. Radially layered configuration for improved performance of packed bed reactors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Research on a New Drag Force Model for Cylindrical Particles in Fixed Bed Reactors. Catalysts 2022. [DOI: 10.3390/catal12101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fixed bed reactors play an important role in converting solid wastes to high-quality products. The solid wastes, as well as the corresponding catalysts, are often made into cylindrical particles. However, research on the drag force for cylindrical particles is still rarely reported. In this work, the fixed bed porosity was firstly predicted with the unresolved CFD-DEM method and validated against experimental data. Then, the Ergun model, Di Felice model, and Ganser model were evaluated against the reported pressure drop data for both the spherical and cylindrical particles, so that a more solid drag force theory could be selected as a candidate for cylindrical particles. Finally, a new Ganser model was proposed for cylindrical particle drag force prediction based on the reported experimental results and validated by other experimental data. It was found that, for the spherical particle bed, the relative prediction errors of the Di Felice model are approximately 10%, while those of the Ergun model are approximately 15%. For the cylindrical particle bed, the relative prediction errors of the Ganser model are approximately 10%, while those of the Di Felice model are much higher than 10%. With the new Ganser model proposed in this work, the maximum error between the predicted pressure drop and the experimental data can be lowered to approximately 5%. The research is of reference value for drag force model selection when simulating similar FBRs with cylindrical particles.
Collapse
|
3
|
Chu M, Xin F, Zhang S, Xu Y, Zhu Z. Particle-Resolved CFD Simulations of Isobutane and 2-Butene Alkylation over Complex-Shaped Zeolite Catalysts in Fixed Bed Reactors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Menghan Chu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Feng Xin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Sizhen Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhenxing Zhu
- Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing, China
| |
Collapse
|
4
|
Jurtz N, Schönherr TD, Kraume M. Numerical investigation of mechanical axial dispersion in slender fixed‐beds. AIChE J 2021. [DOI: 10.1002/aic.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nico Jurtz
- Chair of Chemical and Process Engineering Technische Universität Berlin Berlin Germany
| | | | - Matthias Kraume
- Chair of Chemical and Process Engineering Technische Universität Berlin Berlin Germany
| |
Collapse
|
5
|
Particle-Resolved Computational Fluid Dynamics as the Basis for Thermal Process Intensification of Fixed-Bed Reactors on Multiple Scales. ENERGIES 2021. [DOI: 10.3390/en14102913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Process intensification of catalytic fixed-bed reactors is of vital interest and can be conducted on different length scales, ranging from the molecular scale to the pellet scale to the plant scale. Particle-resolved computational fluid dynamics (CFD) is used to characterize different reactor designs regarding optimized heat transport characteristics on the pellet scale. Packings of cylinders, Raschig rings, four-hole cylinders, and spheres were investigated regarding their impact on bed morphology, fluid dynamics, and heat transport, whereby for the latter particle shape, the influence of macroscopic wall structures on the radial heat transport was also studied. Key performance indicators such as the global heat transfer coefficient and the specific pressure drop were evaluated to compare the thermal performance of the different designs. For plant-scale intensification, effective transport parameters that are needed for simplified pseudo-homogeneous two-dimensional plug flow models were determined from the CFD results, and the accuracy of the simplified modeling approach was judged.
Collapse
|
6
|
Fernengel J, Hinrichsen O. Influence of material properties on voidage of numerically generated random packed beds. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Numerical Analyses of Heterogeneous CLC Reaction and Transport Processes in Large Oxygen Carrier Particles. Processes (Basel) 2021. [DOI: 10.3390/pr9010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous chemical looping combustion (CLC) reactions and conjugate transports in large oxygen carrier particles were numerically investigated with computational fluid dynamics (CFD) approaches, in which a simplified noncatalytic reaction model was implemented for reducing intraparticle modelling computation. Volumic gas-solid reactions were treated as surface reactions based on the equivalent internal surface in the particle model. In large porous particles such as fixed bed CLC reactors, the heterogeneous reactions are often limited by intraparticle diffusion. Comprehensive analyses were conducted on transports across the particle surface and their influences on reactions inside the single particles. A threshold Reynolds number of external convections was found for the enhancement of intraparticle reactions. The heterogeneous reactions, intraparticle diffusions and interstitial transports in a fixed bed CLC reactor randomly packed with 597 spheres were thoroughly analysed with the same numerical approaches. Comprehensive insights of the temporal evolution and spatial distribution of scalars in the packed bed reactor were presented.
Collapse
|
8
|
Enhancing the Thermal Performance of Slender Packed Beds through Internal Heat Fins. Processes (Basel) 2020. [DOI: 10.3390/pr8121528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Slender packed beds are widely used in the chemical and process industry for heterogeneous catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD) is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender packed beds filled with spherical particles. The simulation results are validated against experimental measurements in terms of particle count and pressure drop. The simulation results show that internal heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to an overall increased thermal performance of the system. In a wide flow range (100<Rep<1000), an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal conductivity is observed, respectively.
Collapse
|
9
|
CFD investigation of biogas reformate using membrane-assisted water gas shift reaction: Parametric analyses. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Jurtz N, Wehinger GD, Srivastava U, Henkel T, Kraume M. Validation of pressure drop prediction and bed generation of fixed‐beds with complex particle shapes using discrete element method and computational fluid dynamics. AIChE J 2020. [DOI: 10.1002/aic.16967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nico Jurtz
- Chair of Chemical and Process EngineeringTechnische Universität Berlin Berlin Germany
| | - Gregor D. Wehinger
- Chemical and Electrochemical Process EngineeringTechnische Universität Clausthal Clausthal‐Zellerfeld Germany
| | | | - Tobias Henkel
- Clariant Corporation, BU Catalysts Louisville Kentucky USA
| | - Matthias Kraume
- Chair of Chemical and Process EngineeringTechnische Universität Berlin Berlin Germany
| |
Collapse
|
11
|
Influence of confining wall on pressure drop and particle-to-fluid heat transfer in packed beds with small D/d ratios under high Reynolds number. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|