1
|
Huang T, Jia J, Zhu C, Tian J, Zhang S, Yang X, Lei B, Li Y. A novel mussel-inspired desensitizer based on radial mesoporous bioactive nanoglass for the treatment of dentin exposure: An in vitro study. J Mech Behav Biomed Mater 2024; 152:106420. [PMID: 38310812 DOI: 10.1016/j.jmbbm.2024.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVES The dentin exposure always leads to dentin hypersensitivity and the acid-resistant/abrasion-resistant stability of current therapeutic approaches remain unsatisfatory. Inspired by the excellent self-polymerization/adherence activity of mussels and the superior mineralization ability of bioactive glass, a novel radial mesoporous bioactive nanoglass coated with polydopamine (RMBG@PDA) was developed for prevention and management of dentin hypersensitivity. METHODS Radial mesoporous bioactive nanoglass (RMBG) was synthesized by the sol-gel process combined with the cetylpyridine bromide template self-assembly technique. RMBG@PDA was synthesized by a self-polymerization process involving dopamine and RMBG in an alkaline environment. Then, the nanoscale morphology, chemical structure, crystalline phase and Zeta potential of RMBG and RMBG@PDA were characterized. Subsequently, the ion release ability, bioactivity, and cytotoxicity of RMBG and RMBG@PDA in vitro were investigated. Moreover, an in vitro experimental model of dentin hypersensitivity was constructed to evaluate the effectiveness of RMBG@PDA on dentinal tubule occlusion, including resistances against acid and abrasion. Finally, the Young's modulus and nanohardness of acid-etched dentin were also detected after RMBG@PDA treatment. RESULTS RMBG@PDA showed a typical nanoscale morphology and noncrystalline structure. The use of RMBG@PDA on the dentin surface could effectively occlude dentinal tubules, reduce dentin permeability and achieve excellent acid- and abrasion-resistant stability. Furthermore, RMBG@PDA with excellent cytocompatibility held the capability to recover the Young's modulus and nanohardness of acid-etched dentin. CONCLUSION The application of RMBG@PDA with superior dentin tubule occlusion ability and acid/abrasion-resistant stability can provide a therapeutic strategy for the prevention and the management of dentin hypersensitivity.
Collapse
Affiliation(s)
- Tianjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jieyong Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Changze Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jing Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shiyi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xiaoxi Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
2
|
Zhan G, Yu L, Wang Q, Jin L, Yin X, Cao X, Gao H. Patterned collagen films loaded with miR-133b@MBG-NH 2for potential applications in corneal stromal injury repair. Biomed Mater 2024; 19:035009. [PMID: 38422520 DOI: 10.1088/1748-605x/ad2ed2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Corneal stromal injury is a common surgical disease. With the development of tissue engineering materials, many artificial corneal scaffolds have been developed to replace allograft corneal transplantation and solve the problem of corneal donor shortage. However, few researchers have paid attention to corneal stromal wound healing. Herein, a nanocomposite of amino modified mesoporous bioactive glass (MBG-NH2) and microRNA-133b (miR-133b) was introduced into the patterned collagen films to achieve corneal stromal injury repair. MBG-NH2nanoparticles as a nano delivery carrier could efficiently load miR-133b and achieve the slow release of miR-133b. The physicochemical properties of collagen films were characterized and found the microgrooved collagen films loaded with miR-133b@MBG-NH2nanoparticles possessed similar swelling properties, optical clarity, and biodegradability to the natural cornea.In vitrocell experiments were also conducted and proved that the patterned collagen films with miR-133b@MBG-NH2possessed good biocompatibility, and miR-133b@MBG-NH2nanoparticles could be significantly uptake by rabbit corneal stromal cells (RCSCs) and have a significant impact on the orientation, proliferation, migration, and gene expression of RCSCs. More importantly, the patterned collagen films with miR-133b@MBG-NH2could effectively promote the migration of RCSCs and accelerate wound healing process, and down-regulate the expression levels ofα-SMA, COL-I, and CTGF genes associated with myofibroblast differentiation of corneal stromal cells, which has a potential application prospect in the repair of corneal stromal injury.
Collapse
Affiliation(s)
- Guancheng Zhan
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Lixia Yu
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Longyang Jin
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, People's Republic of China
| | - Xiaohong Yin
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Huang SM, Chen WC, Wu CC, Liu SM, Ko CL, Chen JC, Shih CJ. Synergistic effect of drug/antibiotic-impregnated micro/nanohybrid mesoporous bioactive glass/calcium phosphate composite bone cement on antibacterial and osteoconductive activities. BIOMATERIALS ADVANCES 2023; 152:213524. [PMID: 37336009 DOI: 10.1016/j.bioadv.2023.213524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Calcium phosphate bone cements (CPC) can be used in minimally invasive surgery because of their injectability, and they can also be used to repair small and irregular bone defects. This study aimed to release the antibiotic gentamicin sulfate (Genta) to reduce tissue inflammation and prevent infection in the early stages of bone recovery. Subsequently, the sustained release of the bone-promoting drug ferulic acid (FA) mimicked the response of osteoprogenitor D1 cells interaction, thereby accelerating the healing process of the overall bone repair. Accordingly, the different particle properties of micro-nano hybrid mesoporous bioactive glass (MBG), namely, micro-sized MBG (mMBG) and nano-sized MBG (nMBG), were explored separately to generate different dose releases in MBG/CPC composite bone cement. Results show that nMBG had better sustained-release ability than mMBG when impregnated with the same dose. When 10 wt% of mMBG hybrid nMBG and composite CPC were used, the amount of MBG slightly shortened the working/setting time and lowered the strength but did not hinder the biocompatibility, injectability, anti-disintegration, and phase transformation of the composite bone cement. Furthermore, compared with 2.5wt%Genta@mMBG/7.5 wt% FA@nMBG/CPC, 5wt.%Genta@mMBG/5wt.%FA@nMBG/CPC exhibited better antibacterial activity, better compressive strength, stronger mineralization of osteoprogenitor cell, and similar 14-day slow-release trend of FA. The MBG/CPC composite bone cement developed can be used in clinical surgery to achieve the synergistic sustained release of antibacterial and osteoconductive activities.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Cheng-Chen Wu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chia-Ling Ko
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jian-Chih Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
4
|
Arcos D, Portolés MT. Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. Int J Mol Sci 2023; 24:3249. [PMID: 36834659 PMCID: PMC9964985 DOI: 10.3390/ijms24043249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol-gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María Teresa Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Mao S, Wang S, Niu Y, Wu J, Jia P, Zheng J, Dong Y. Induction of Cartilage Regeneration by Nanoparticles Loaded with Dentin Matrix Extracted Proteins. Tissue Eng Part A 2022; 28:807-817. [PMID: 35473319 DOI: 10.1089/ten.tea.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to the limited self-repair capacity of articular cartilage, tissue engineering has good application prospects for cartilage regeneration. Dentin contains several key growth factors involved in cartilage regeneration. However, it remains unknown whether dentin matrix extracted proteins (DMEP) can be utilized as a complex growth-factor mixture to induce cartilage regeneration. In this work, we extracted DMEP from human dentin and improved the content and activity of chondrogenic-related growth factors in DMEP by alkaline conditioning. Afterwards, mesoporous silica nanoparticles (MSNs) with particular physical and chemical properties were composed to selectively load and sustain the release of proteins in DMEP. MSN-DMEP promoted chondrogenic differentiation of rat bone marrow-derived mesenchymal stem cells with fewer growth factors than exogenously added transforming growth factor-β1 (TGF-β1). Therefore, MSN-DMEP may serve as a promising candidate for cartilage regeneration as an alternative to expensive synthetic growth factors.
Collapse
Affiliation(s)
- Sicong Mao
- Peking University School and Hospital of Stomatology, Department of Cariology and Endodontology, Beijing, China;
| | - Sainan Wang
- Peking University School and Hospital of Stomatology, Department of Cariology and Endodontology, 22 Zhongguancun Nandajie, Haidian District, Beijing, China, 100081;
| | - Yuting Niu
- Peking University School and Hospital of Stomatology, Department of Prosthodontics, Beijing, China;
| | - Jilin Wu
- Peking University School and Hospital of Stomatology, Department of Cariology and Endodontology, Beijing, China;
| | - Peipei Jia
- Peking University School and Hospital of Stomatology, Department of Cariology and Endodontology, Beijing, China;
| | - Jinxuan Zheng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, GUangdong, China;
| | - Yanmei Dong
- Peking University School and Hospital of Stomatology, Department of Cariology and Endodontology, Beijing, China;
| |
Collapse
|
6
|
Liu Y, Zou P, Huang J, Cai J. Co-immobilization of glucose oxidase and catalase in porous magnetic chitosan microspheres for production of sodium gluconate. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2021-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
In the process of immobilizing the enzyme, the overflow of enzyme and the decrease of enzyme activity are very serious. In order to improve the stable binding between enzyme and carrier, a kind of porous magnetic chitosan microsphere with appropriate pore size was successfully prepared by adjusting the size of pore-forming agent in this paper. The rough porous structure is favorable for the adsorption of enzyme and the catalytic action of enzyme on substrate. The results showed that when the pore size of the microspheres was at 790.15 ± 250.91 nm, the protein loading and enzyme activity of GOD could be increased effectively, which could reach 58.28 ± 2.64 mg/g and 16.93 ± 0.14 U, respectively. The co-immobilization of CAT and GOD eliminated the harmful by-product H2O2 in time and effectively solved the problem of continuous deactivation of GOD in the reaction process. When the mass ratio of PMCSM/GOD/CAT was 100/6.02/10.96 (mg/mg/mg), the relative enzyme activity of GOD reached the highest (133.32 ± 0.68%). The thermal stability and pH stability of the enzyme were greatly improved after co-immobilization. The relative enzyme activity of PMCSM@GOD@CAT was 57.27 ± 3.04% at 60 °C, while that of free GOD was only 28.76 ± 4.10%. The relative enzyme activity of PMCSM@GOD@CAT was above 63% at pH 5–10, while the relative enzyme activity of free GOD was only 4.98 ± 0.72% at pH 10. The yield of sodium gluconate from 50 mL 250 mg/mL glucose catalyzed by PMCSM@GOD@CAT loading 60.2 mg GOD was 96.19 ± 0.79% at pH 6.0 and 30 °C, and the reaction lasted 6 h. The relative enzyme activity of PMCSM@GOD@CAT remained 69.77 ± 0.78% after repeated use for 10 times. After 30 days of storage, PMCSM@GOD@CAT maintained its initial activity of 76.52 ± 1.41%. The immobilized process studied in this paper provides a theoretical basis for the production of sodium gluconate by double enzyme directly catalyzing and lays a certain foundation for the application of immobilized enzyme in the future chemical industry and food industry.
Collapse
Affiliation(s)
- Youcai Liu
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Pengpeng Zou
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Juan Huang
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| | - Jun Cai
- School of Bioengineering and Food , Hubei University of Technology , Wuhan , 430068 , China
| |
Collapse
|
7
|
Venugopal V, Sahoo S, Zaki M, Agarwal M, Gosvami NN, Krishnan NMA. Looking through glass: Knowledge discovery from materials science literature using natural language processing. PATTERNS (NEW YORK, N.Y.) 2021; 2:100290. [PMID: 34286304 PMCID: PMC8276010 DOI: 10.1016/j.patter.2021.100290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Most of the knowledge in materials science literature is in the form of unstructured data such as text and images. Here, we present a framework employing natural language processing, which automates text and image comprehension and precision knowledge extraction from inorganic glasses' literature. The abstracts are automatically categorized using latent Dirichlet allocation (LDA) to classify and search semantically linked publications. Similarly, a comprehensive summary of images and plots is presented using the caption cluster plot (CCP), providing direct access to images buried in the papers. Finally, we combine the LDA and CCP with chemical elements to present an elemental map, a topical and image-wise distribution of elements occurring in the literature. Overall, the framework presented here can be a generic and powerful tool to extract and disseminate material-specific information on composition-structure-processing-property dataspaces, allowing insights into fundamental problems relevant to the materials science community and accelerated materials discovery.
Collapse
Affiliation(s)
- Vineeth Venugopal
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Corresponding author
| | - Sourav Sahoo
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohd Zaki
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Center, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - N. M. Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Corresponding author
| |
Collapse
|
8
|
Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004586. [PMID: 34165902 PMCID: PMC8224433 DOI: 10.1002/advs.202004586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Bone diseases constitute a major issue for modern societies as a consequence of progressive aging. Advantages such as open mesoporous channel, high specific surface area, ease of surface modification, and multifunctional integration are the driving forces for the application of mesoporous nanoparticles (MNs) in bone disease diagnosis and treatment. To achieve better therapeutic effects, it is necessary to understand the properties of MNs and cargo delivery mechanisms, which are the foundation and key in the design of MNs. The main types and characteristics of MNs for bone regeneration, such as mesoporous silica (mSiO2 ), mesoporous hydroxyapatite (mHAP), mesoporous calcium phosphates (mCaPs) are introduced. Additionally, the relationship between the cargo release mechanisms and bone regeneration of MNs-based nanocarriers is elucidated in detail. Particularly, MNs-based smart cargo transport strategies such as sustained cargo release, stimuli-responsive (e.g., pH, photo, ultrasound, and multi-stimuli) controllable delivery, and specific bone-targeted therapy for bone disease diagnosis and treatment are analyzed and discussed in depth. Lastly, the conclusions and outlook about the design and development of MNs-based cargo delivery systems in diagnosis and treatment for bone tissue engineering are provided to inspire new ideas and attract researchers' attention from multidisciplinary areas spanning chemistry, materials science, and biomedicine.
Collapse
Affiliation(s)
- Panpan Pan
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
9
|
Ji L, Xu T, Gu J, Liu Q, Zhou S, Shi G, Zhu Z. Preparation of bioactive glass nanoparticles with highly and evenly doped calcium ions by reactive flash nanoprecipitation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:48. [PMID: 33891166 PMCID: PMC8064980 DOI: 10.1007/s10856-021-06521-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Nanoscale bioactive glass particles have greater bioactivity than microscale bioactive glass particles, due to their high-specific surface area and fast ion release rate in body fluid. However, preparation of bioactive glass nanoparticles (BGNPs) is difficult since calcium is not easy to be highly doped into the forming silica atom network, leading to an uneven distribution and a low content of calcium. In addition, BGNPs are usually prepared in a dilute solution to avoid agglomeration of the nanoparticles, which decreases the production efficiency and increases the cost. In this work, BGNPs are prepared by a method of the reactive flash nanoprecipitation (RFNP) as well as a traditional sol-gel method. The results indicate that the BGNPs by the RFNP present a smaller size, narrower size distribution, more uniform composition, and better bioactivity than those by the traditional sol-gel method. The obtained BGNPs have uniform compositions close to the feed values. The high and even doping of calcium in the BGNPs is achieved. This successful doping of calcium into nanoparticles by the RFNP demonstrates a promising way to effectively generate high-quality BGNPs for bone repairs.
Collapse
Affiliation(s)
- Lijun Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Tong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jun Gu
- Department of Orthopaedics, Xishan People's Hospital of Wuxi, Wuxi, 214000, China
| | - Qingren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi, Wuxi, 214000, China
| | - Shu Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guojun Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhengxi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
10
|
Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. MATERIALS HORIZONS 2021; 8:300-335. [PMID: 34821257 DOI: 10.1039/d0mh01498b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, porous bioactive glass micro/nanospheres (PBGSs) have emerged as attractive biomaterials in various biomedical applications where such engineered particles provide suitable functions, from tissue engineering to drug delivery. The design and synthesis of PBGSs with controllable particle size and pore structure are critical for such applications. PBGSs have been successfully synthesized using melt-quenching and sol-gel based methods. The morphology of PBGSs is controllable by tuning the processing parameters and precursor characteristics during the synthesis. In this comprehensive review on PBGSs, we first overview the synthesis approaches for PBGSs, including both melt-quenching and sol-gel based strategies. Sol-gel processing is the primary technology used to produce PBGSs, allowing for control over the chemical compositions and pore structure of particles. Particularly, the influence of pore-forming templates on the morphology of PBGSs is highlighted. Recent progress in the sol-gel synthesis of PBGSs with sophisticated pore structures (e.g., hollow mesoporous, dendritic fibrous mesoporous) is also covered. The challenges regarding the control of particle morphology, including the influence of metal ion precursors and pore expansion, are discussed in detail. We also highlight the recent achievements of PBGSs in a number of biomedical applications, including bone tissue regeneration, wound healing, therapeutic agent delivery, bioimaging, and cancer therapy. Finally, we conclude with our perspectives on the directions of future research based on identified challenges and potential new developments and applications of PBGSs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
11
|
Akbarzadeh I, Tavakkoli Yaraki M, Ahmadi S, Chiani M, Nourouzian D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Liao L, Meng Y, Wang R, Jia B, Li P. Coupling and Regulation of Porous Carriers Using Plasma and Amination to Improve the Catalytic Performance of Glucose Oxidase and Catalase. Front Bioeng Biotechnol 2019; 7:426. [PMID: 31921828 PMCID: PMC6923177 DOI: 10.3389/fbioe.2019.00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple enzyme systems are being increasingly used for their high-efficiency and co-immobilization is a key technology to lower the cost and improve the stability of enzymes. In this study, poly glycidyl methacrylate (PGMA) spheres were synthesized using suspension polymerization, and were used as a support to co-immobilize glucose oxidase (GOx) and catalase (CAT). Surface modification was carried out via a combination of plasma and amination to promote the properties of the catalyzer. The co-immobilized enzymes showed a more extensive range of optimum pH and temperature from 5.5 to 7.5 and 25 to 40°C, respectively, compared to free enzymes. Furthermore, the maximum activity and protein adsorption quantity of the co-immobilized enzymes reached 25.98 U/g and 6.07 mg/g, respectively. The enzymatic activity of the co-immobilized enzymes was maintained at ~70% after storage for 5 days and at 82% after three consecutive cycles, indicating that the immobilized material could be applied industrially.
Collapse
Affiliation(s)
- Lingtong Liao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuling Meng
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|