1
|
Chen Y, Wang R, Dong R, Kou J, Lu C. Optimization and Parameter Investigation of the Planar Photocatalytic Microreactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11590-11598. [PMID: 38776114 DOI: 10.1021/acs.langmuir.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The microreactor could break the limitation of mass transfer and photon transmission in photocatalysis. Through a facile assembly method, a planar photocatalytic microreactor was constructed to fit most of the photocatalysts regardless of their strict preparation method. This microreactor exhibits a 2.41-fold efficiency compared to a bulk reactor. Parameters that affect the photocatalytic performance were discussed in detail by experiment and calculation. The diffusion rate is the main bottleneck in a planar microreactor under a laminar flow. The microreactor with lower height shows higher efficiency owing to faster mass transfer, while the length and width affect slightly. Elevating the light power density provides a diminishing benefit. Faster flow speed reduces the apparent degradation percent but increases the chemical reaction rate, in fact. The reaction rate increases to 9.31 times by reducing the height from 500 to 100 μm and grows another 1.76 times by adding the flow speed from 10 to 40 mL/h. This work illustrates the influence of parameters on planar photocatalytic microreactors and offers a promising prospect for large-volume photocatalytic water treatment.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ruizhe Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Capillary-driven flow combined with electric field and Fenton reaction to remove ionic dyes from water or concentrated NaCl solution: Mechanism and application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Navarro-Gázquez PJ, Muñoz-Portero MJ, Blasco-Tamarit E, Sánchez-Tovar R, García-Antón J. Synthesis and applications of TiO 2/ZnO hybrid nanostructures by ZnO deposition on TiO 2 nanotubes using electrochemical processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.
Collapse
Affiliation(s)
- Pedro José Navarro-Gázquez
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Maria J. Muñoz-Portero
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Encarna Blasco-Tamarit
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Rita Sánchez-Tovar
- Departamento de Ingeniería Química, Universitat de Valencia , Av. de las Universitats, s/n, 46100 Burjassot , Spain
| | - José García-Antón
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| |
Collapse
|
4
|
Wang L, Huang Z, Yang X, Rogée L, Huang X, Zhang X, Lau SP. Review on optofluidic microreactors for photocatalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Collapse
Affiliation(s)
- Lei Wang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Ziyu Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaohui Yang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Lukas Rogée
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Xiaowen Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xuming Zhang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Shu Ping Lau
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| |
Collapse
|
5
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
6
|
Kharatzadeh E, Masharian SR, Yousefi R. The effects of S-doping concentration on the photocatalytic performance of SnSe/S-GO nanocomposites. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Process Intensification Approach Using Microreactors for Synthesizing Nanomaterials-A Critical Review. NANOMATERIALS 2021; 11:nano11010098. [PMID: 33406661 PMCID: PMC7823899 DOI: 10.3390/nano11010098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials have found many applications due to their unique properties such as high surface-to-volume ratio, density, strength, and many more. This review focuses on the recent developments on the synthesis of nanomaterials using process intensification. The review covers the designing of microreactors, design principles, and fundamental mechanisms involved in process intensification using microreactors for synthesizing nanomaterials. The microfluidics technology operates in continuous mode as well as the segmented flow of gas–liquid combinations. Various examples from the literature are discussed in detail highlighting the advantages and disadvantages of microfluidics technology for nanomaterial synthesis.
Collapse
|