1
|
Khan S, Khan I, Sadiq M, Muhammad N. Experimental and Theoretical Photocatalytic Potential of Binary NiTiO2 and Ternary CdNiTiO2 Nanocomposites of TiO2. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
2
|
S D, Tayade RJ. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review. CHEMOSPHERE 2022; 304:135300. [PMID: 35691396 DOI: 10.1016/j.chemosphere.2022.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Bismuth-based composite materials have unique structural, chemical, optical, and electrical properties that are highly beneficial in Photocatalysis. The layered structure and tunable bandgap properties of the Bismuth-based composites are advantageous for the absorption of solar light efficiently. Also, these properties help the separation and recombination of photogenerated charge carriers, leading to enhancement in the photocatalytic activity. Synthesis of the catalyst at a lower temperature to produce catalyst reduces the production cost and electrical energy consumption. This review provides an overview of the recent development in Bismuth-based composite nanostructured photocatalytic materials, mainly using low-temperature driven synthesis methods. Herein, we have mainly summarized the primarily used low temperature-based synthetic routes, particularly in the temperature range of 50-300 °C for synthesizing Bismuth-based composite materials. In addition to this, the photocatalytic mechanism, the textural, structural, electronic, and photocatalytic properties of the synthesized photocatalysts are discussed. The literature shows that the surface area of the composite Bismuth-based photocatalytic materials synthesized using the low-temperature synthetic route is in the range of 1.5-81 m2/g and can be activated by solar, ultraviolet, and Light Emitting Diode (LEDs) light irradiation based on the synthetic route. Their photocatalytic performance and structural stability are excellent and utilized for several runs. The comprehensive understanding of the low-temperature synthesis of Bismuth-based composite materials for visible light-activated photocatalytic applications provided will be useful for developing photocatalytic materials on an industrial scale due to energy-efficient synthetic routes. Furthermore, the prospects of low temperature-driven Bismuth-based composite synthesis routes are discussed.
Collapse
Affiliation(s)
- Devika S
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Rajesh J Tayade
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
3
|
Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M. Halides and oxyhalides-based photocatalysts for abatement of organic water contaminants - An overview. ENVIRONMENTAL RESEARCH 2022; 212:113149. [PMID: 35378122 DOI: 10.1016/j.envres.2022.113149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Recently, halides (silver halides, AgX; perosvkite halides, ABX3) and oxyhalides (bismuth oxyhalides, BiOX) based nanomaterials are noticeable photocatalysts in the degradation of organic water pollutants. Therefore, we review the recent reports to explore improvement strategies adopted in AgX, ABX3 and BiOX (X = Cl, Br and I)-based photocatalysts in water pollution remediation. Herein, the photocatalytic degradation performances of each type of these photocatalysts were discussed. Strategies such as tailoring the morphology, crystallographic facet exposure, surface area, band structure, and creation of surface defects to improve photocatalytic activities of pure halides and BiOCl photocatalysts are emphasized. Other strategies like metal ion and/or non-metal doping and construction of composites, adopted in these photocatalysts were also reviewed. Furthermore, the way of production of active radicals by these photocatalysts under ultraviolet/visible light source is highlighted. The deciding factors such as structure of pollutant, light sources and other parameters on the photocatalytic performances of these materials were also explored. Based on this literature survey, the need of further research on AgX, ABX3 and BiOX-based photocatalysts were suggested. This review might be beneficial for researchers who are working in halides and oxyhalides-based photocatalysis for water treatment.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | |
Collapse
|
4
|
Zhang W, Xing P, Zhang C, Zhang J, Hu X, Zhao L, He Y. Facile synthesis of strontium molybdate coupled g-C3N4 composite for effective tetracycline and dyes degradation under visible light. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Qi X, Zhao Z, Li Z, He Z, Lai H, Liu B, Jin T. Sea urchin-like WO3-x loaded with Ag for photocatalytic degradation and bactericidal. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hussain A, Hou J, Tahir M, Ali S, Rehman ZU, Bilal M, Zhang T, Dou Q, Wang X. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif Hussain
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Department of Physics, University of Lahore, Lahore, Pakistan
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Guangling College, Yangzhou University, 225009, Yangzhou, Jiangsu. PR, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| | - Muhammad Tahir
- Physics Department, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - S.S Ali
- School of Physical Sciences University of the Punjab Lahore, 54590, Pakistan
| | - Zia Ur Rehman
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Muhammad Bilal
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Tingting Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Qian Dou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| |
Collapse
|
7
|
Modification of hollow BiOCl/TiO2 nanotubes with phosphoric acid to enhance their photocatalytic performance. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Náfrádi M, Hernadi K, Kónya Z, Alapi T. Investigation of the efficiency of BiOI/BiOCl composite photocatalysts using UV, cool and warm white LED light sources - Photon efficiency, toxicity, reusability, matrix effect, and energy consumption. CHEMOSPHERE 2021; 280:130636. [PMID: 33975237 DOI: 10.1016/j.chemosphere.2021.130636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
BiOI, BiOCl, and their composites (BiOI:BiOCl) with molar ratios from 95:5 to 5:95 were synthesized and tested in the transformation of methyl orange (MO) and sulfamethoxypyridazine (SMP) antibiotic, using three various LED light sources: UV LEDs (398 nm), cool and warm white LEDs (400-700 nm). The 80:20 BiOI:BiOCl photocatalyst showed the best adsorption capacity for MO and enhanced activity compared to BiOI and BiOCl. The apparent quantum yield (Φapp) of the MO and SMP transformation for cool and warm white light was slightly lower than for 398 nm UV radiation. The effect of methanol and 1,4-benzoquinone proved that the transformation is initiated mainly via direct charge transfer, resulting in the demethylation of MO and SO2 extrusion from SMP. The change of photocatalytic efficiency was followed during three cycles. After the first one, the transformation rates decreased, but there was no significant difference between the second and third cycles. The decreased efficiency is most probably caused by the intermediates, whose continuous accumulation was observed during the cycles. Ecotoxicity measurements confirmed that no toxic substances were leached from the catalyst, but the transformation of both MO and SMP results in toxic intermediates. Using 80:20 BiOI:BiOCl and LED light source, the energy requirement of the removal is about half of the value determined using TiO2 and a mercury vapor lamp. The effect of some components of wastewater (Cl-, HCO3- and humic acids), pH, and two matrices on the composite photocatalysts' efficiency and stability were also investigated.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720, Szeged, Dóm tér 7, Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla tér 1, Hungary; Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, HU-3515, Miskolc, Egyetemváros, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Rerrich Béla tér 1, Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720, Szeged, Dóm tér 7, Hungary.
| |
Collapse
|
9
|
Yao S, Wu C, Li D, Gao B, Wen X, Liu Z, Li W. Coupling SnS 2 and rGO aerogel to CuS for enhanced light-assisted OER electrocatalysis. Dalton Trans 2021; 50:5530-5539. [PMID: 33908949 DOI: 10.1039/d1dt00271f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to harvest more light wavelengths to improve the light-assisted electrochemical water splitting capacity, we developed a novel heterostructure of three-dimensional (3D) flower-like CuS architecture with accompanying SnS2 nanoparticles and reduced graphene oxide (rGO) aerogel for outstanding light-assisted electrocatalytic OER performance and good stability. The excellent catalytic kinetics, effective capturing of visible light, and rapid charge transfer of the CuS/SnS2/rGO (CSr) heterostructure were demonstrated. The overpotential (264 mV@10 mA cm-2) under light-assisted conditions is 20% lower than that under light-chopped conditions. SnS2 can harvest more light wavelengths and this boosts its intrinsic activity. However, with the increase of the SnS2 content, the OER activity decreases. The combination of the CS heterostructure and the rGO conductive aerogel achieves rapid charge transfer. Furthermore, the possible mechanism of the light-assisted electrocatalytic OER was also proposed. Overall, this work provides new insights into the simple and scalable fabrication of a highly efficient, low-cost, and stable non-noble-metal-based electrocatalyst.
Collapse
Affiliation(s)
- Shujuan Yao
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Chuanrui Wu
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Danyang Li
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Bo Gao
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Xiaoxu Wen
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Ziyi Liu
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| | - Wenzhi Li
- School of Materials Science and Engineering, Liaocheng University, Shandong, 252059, China.
| |
Collapse
|
10
|
Zada A, Khan M, Khan MA, Khan Q, Habibi-Yangjeh A, Dang A, Maqbool M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. ENVIRONMENTAL RESEARCH 2021; 195:110742. [PMID: 33515579 DOI: 10.1016/j.envres.2021.110742] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols are very important environmental pollutants, which have created huge problems for both aquatic and terrestrial lives. Therefore, their removal needs urgent, effective, and advanced technologies to safeguard our environment for future generation. This review encompasses a comprehensive study of the applications of chlorophenols, their hazardous effects and photocatalytic degradation under light illumination. The effect of various factors such as pH and presence of different anions on the photocatalytic oxidation of chlorophenols have been elaborated comprehensively. The production of different oxidizing agents taking part in the photodegradation of chlorophenols are given a bird eye view. The photocatalytic degradation mechanism of different chlorophenols over various photocatalyts has been discussed in more detail and elaborated that how different photocatalysts degrade the same chlorophenols with the aid of different oxidizing agents produced during photocatalysis. Finally, a future perspective has been given to deal with the effective removal of these hazardous pollutants from the environment.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Chemistry, University of Okara, Renala Khurd, Punjab, Pakistan
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qasim Khan
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Aziz Habibi-Yangjeh
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alei Dang
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Meng X, Song J, Ren J, Zhu J. BiOBr/Ti 3C 2 nanocomposites prepared via an octanol solvothermal method to achieve enhanced visible photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01688h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BiOBr nanospheres grown in situ on lamellar Ti3C2 were synthesised in an octanol solvothermal system to obtain BiOBr/Ti3C2 heterojunction composites with high visible photocatalytic activity (OBT).
Collapse
Affiliation(s)
- XiaoRong Meng
- Sch Chem & Chem Engn
- Xi'an University of Architecture & Technology
- Xian 710055
- PR China
- Sch Environm & Municipal Engn
| | - JinFeng Song
- Sch Chem & Chem Engn
- Xi'an University of Architecture & Technology
- Xian 710055
- PR China
| | - Jing Ren
- Sch Environm & Municipal Engn
- Xi'an University of Architecture & Technology
- Xian 710055
- PR China
| | - JunFeng Zhu
- Sch Chem & Chem Engn
- Xi'an University of Architecture & Technology
- Xian 710055
- PR China
| |
Collapse
|
12
|
Enesca A, Andronic L. The Influence of Photoactive Heterostructures on the Photocatalytic Removal of Dyes and Pharmaceutical Active Compounds: A Mini-Review. NANOMATERIALS 2020; 10:nano10091766. [PMID: 32906732 PMCID: PMC7560097 DOI: 10.3390/nano10091766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The diversification of pollutants type and concentration in wastewater has underlined the importance of finding new alternatives to traditional treatment methods. Advanced oxidation processes (AOPs), among others, are considered as promising candidate to efficiently remove organic pollutants such as dyes or pharmaceutical active compounds (PhACs). The present minireview resumes several recent achievements on the implementation and optimization of photoactive heterostructures used as photocatalysts for dyes and PhACs removal. The paper is focused on various methods of enhancing the heterostructure photocatalytic properties by optimizing parameters such as synthesis methods, composition, crystallinity, morphology, pollutant concentration and light irradiation.
Collapse
|