1
|
Chaabane L, Loupiac C, Bouyer F, Bezverkhyy I, Foley S, Assifaoui A. Adsorption of β-Lactoglobulin on Thiol-Functionalized Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16132-16144. [PMID: 39037867 DOI: 10.1021/acs.langmuir.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
SBA-15 mesoporous materials were synthesized with different pore sizes (5 and 10 nm) and thiol-functionalized groups and then characterized to describe their ability to differentially adsorb β-lactoglobulin (BLG), a globular protein with an ellipsoid shape measuring 6.9 nm in length and 3.6 nm in width. All adsorption experiments showed that the adsorption capacities of mesoporous materials for BLG were dependent on the duration of contact between the two materials (mesoporous material and BLG) and the initial BLG concentration. It was also shown that the pore sizes and thiol groups of SBA-15-based adsorbents are important factors for the BLG adsorption capacities. Among the tested adsorbents, thiol-functionalized SBA-15 with a 10 nm pore size (SBA-15-SH-10) showed the highest adsorption capacity (0.560 g·g-1) under optimal experimental conditions. Kinetics studies demonstrated that the adsorption occurs predominantly inside the pores, with interactions occurring on heterogeneous surfaces. In addition, the thermodynamic parameters indicate a spontaneous and exothermic behavior of the BLG adsorption process onto the thiol-functionalized SBA-15 mesoporous adsorbent. Finally, the characterization of the SBA-15-SH-10 adsorbent at 308 K showed the occurrence of an oxidation reaction of the thiol groups to sulfonate groups during the adsorption process as confirmed by Raman spectroscopy. The spectra recorded after adsorption of the protein showed that this adsorption did not affect the secondary structure of the protein.
Collapse
Affiliation(s)
- Laroussi Chaabane
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Camille Loupiac
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Frédéric Bouyer
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS─Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France
| | - Igor Bezverkhyy
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS─Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France
| | - Sarah Foley
- Laboratoire Chrono-environnement (UMR CNRS 6249), Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Ali Assifaoui
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
- Department of Pharmaceutical Technology, School of Pharmacy, Université de Bourgogne, 7 Bd Jeanne d'Arc, 21079 Dijon, France
| |
Collapse
|
2
|
Marszałek A, Puszczało E, Szymańska K, Sroka M, Kudlek E, Generowicz A. Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2917. [PMID: 38930286 PMCID: PMC11205702 DOI: 10.3390/ma17122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94-95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2.
Collapse
Affiliation(s)
- Anna Marszałek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Ewa Puszczało
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Marek Sroka
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Agnieszka Generowicz
- Department of Environmental Technologies, Cracow University of Technology, 31-155 Kraków, Poland
| |
Collapse
|
3
|
Zhang Y, Xie X, Yang Y, Pal M, Dong Chen X, Wu Z. Comparative study on Al-SBA-15 prepared by spray drying and traditional methods for bulky hydrocarbon cracking: Properties, performance and influencing factors. J Colloid Interface Sci 2024; 663:749-760. [PMID: 38432173 DOI: 10.1016/j.jcis.2024.02.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Mesoporous aluminosilicates Al-SBA-15 with large pore sizes and suitable acid properties are promising substitutes to zeolites for catalytic cracking of bulky hydrocarbons without molecular diffusion limitation. The conventional processes to synthesize Al-SBA-15 are time-consuming and often suffer from low "framework" Al contents. Herein, Al-SBA-15 microspheres are synthesized using the rapid and scalable microfluidic jet spray drying technique. They possess uniform particle sizes (45-60 μm), variable surface morphologies, high surface areas (264-340 m2/g), uniform mesopores (3.8-4.9 nm) and rich acid sites (126-812 μmol/g) and high acid strength. Their physicochemical properties are compared with the counterparts synthesized using traditional hydrothermal and evaporation-induced self-assembly methods. The spray drying technique results in a higher incorporation of aluminum (Al) atoms into the silica "framework" compared to the other two methods. The catalytic cracking efficiencies of 1,3,5-triisopropylbenzene (TIPB) on the Al-SBA-15 materials synthesized using the three different methods and nanosized ZSM-5 are compared. The optimal spray-dried Al-SBA-15 exhibits the best performance with 100 % TIPB conversion, excellent selectivity (about 75 %) towards the formation of deeply cracked products (benzene and propylene) and high stability. The catalytic performances of the spray-dried Al-SBA-15 with varying Si/Al ratios are also compared. The reasons for the different performances of the different materials are discussed, where the mesopores, high acid density and strength are observed to play the most critical role. This work might provide a basis for the synthesis of mesoporous rich metal-substituted silica materials for different catalytic applications.
Collapse
Affiliation(s)
- Yali Zhang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Xianglin Xie
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Yunhan Yang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Manas Pal
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| | - Xiao Dong Chen
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China.
| |
Collapse
|
4
|
Zeidan H, Can M, Marti ME. Synthesis, characterization, and use of an amine-functionalized mesoporous silica SBA-15 for the removal of Congo Red from aqueous media. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Danesh-khorasgani M, Faghihian H, Givianrad MH, Aberoomand-Azar P, Saber-Tehrani M. Synthesis and application of a novel mesoporous SBA-15 sorbent functionalized by 2,4 dinitrophenylhydrazine (DNPH) for simultaneous removal of Pb(II), Cr(III), Cd(II) and Co(II) from aqueous solutions: Experimental design, kinetic, thermodynamic, and isotherm aspects. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Geszke-Moritz M, Moritz M, Dadej D, Jelińska A. Modification of the Release of Poorly Soluble Sulindac with the APTES-Modified SBA-15 Mesoporous Silica. Pharmaceutics 2021; 13:pharmaceutics13101693. [PMID: 34683986 PMCID: PMC8537723 DOI: 10.3390/pharmaceutics13101693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of oral drug administration is related to the solubility of a drug in the gastrointestinal tract and its ability to penetrate the biological membranes. As most new drugs are poorly soluble in water, there is a need to develop novel drug carriers that improve the dissolution rate and increase bioavailability. The aim of this study was to analyze the modification of sulindac release profiles in various pH levels with two APTES ((3-aminopropyl)triethoxysilane)-modified SBA-15 (Santa Barbara Amorphous-15) silicas differing in 3-aminopropyl group content. Furthermore, we investigated the cytotoxicity of the analyzed molecules. The materials were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning and transmission electron microscopy, proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Sulindac loaded on the SBA-15 was released in the hydrochloric acidic medium (pH 1.2) and phosphate buffers (pH 5.8, 6.8, and 7.4). The cytotoxicity studies were performed on Caco-2 cell line. The APTES-modified SBA-15 with a lower adsorption capacity towards sulindac released the drug in a less favorable manner. However, both analyzed materials improved the dissolution rate in acidic pH, as compared to crystalline sulindac. Moreover, the SBA-15, both before and after drug adsorption, exhibited insignificant cytotoxicity towards Caco-2 cells. The presented study evidenced that SBA-15 could serve as a non-toxic drug delivery system that enhances the dissolution rate of sulindac and improves its bioavailability.
Collapse
Affiliation(s)
- Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
- Correspondence:
| | - Aneta Woźniak-Braszak
- Functional Materials Physics Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Paweł Bilski
- Medical Physics and Radiospectroscopy Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Geszke-Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmacognosy and Natural Medicines, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Michał Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Daniela Dadej
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Faculty of Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| |
Collapse
|
8
|
Wang Y, Yu C, Zeng D, Zhang Z, Cao X, Liu Y. High-efficiency removal of U(VI) by mesoporous carbon functionalized with amino group. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07747-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|