1
|
Yan S, Fang X, Zhao G, Qiu T, Ding K. Nanobubbles Adsorption and Its Role in Enhancing Fine Argentite Flotation. Molecules 2024; 30:79. [PMID: 39795136 PMCID: PMC11721802 DOI: 10.3390/molecules30010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration. Furthermore, the NBs formed a thin film on the argentite surface, which decreased the adsorption of sodium diethyldithiocarbamate. Microflotation tests confirmed that the introduction of NBs considerably enhanced the recovery of argentite using flotation technology.
Collapse
Affiliation(s)
- Shunde Yan
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (S.Y.); (X.F.); (T.Q.); (K.D.)
| | - Xihui Fang
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (S.Y.); (X.F.); (T.Q.); (K.D.)
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guanfei Zhao
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (S.Y.); (X.F.); (T.Q.); (K.D.)
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tingsheng Qiu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (S.Y.); (X.F.); (T.Q.); (K.D.)
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kaiwei Ding
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (S.Y.); (X.F.); (T.Q.); (K.D.)
| |
Collapse
|
2
|
Gouvêa Junior JT, Chipakwe V, de Salles Leal Filho L, Chehreh Chelgani S. Biodegradable ether amines for reverse cationic flotation separation of ultrafine quartz from magnetite. Sci Rep 2023; 13:20550. [PMID: 37996485 PMCID: PMC10667488 DOI: 10.1038/s41598-023-47807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
A considerable amount of ultrafine magnetite as the iron source will end up in the tailing dams since the magnetic separation process markedly drops as the particle size. Cationic reverse flotation could be one of the main alternatives for recovering ultrafine magnetite. As a systematic approach, this study explored the flotation efficiency and interaction mechanisms of two biodegradable ether amines (diamine and monoamine) to separate ultrafine quartz from magnetite (- 20 µm). Several assessments (single and mixed mineral flotation, zeta potential, contact angle, surface tension measurement, turbidity, and Fourier transform infrared) were conducted to explore the efficiency of the process and the interaction mechanisms. Results indicated that ether diamine and monoamine could highly float ultrafine quartz particles (95.9 and 97.7%, respectively) and efficiently separate them from ultrafine magnetite particles. Turbidity assessments highlighted that these cationic collectors could aggregate magnetite particles (potentially hydrophobic coagulation) and enhance their depression. Surface analyses revealed that the collector mainly adsorbed on the quartz particles, while it was essentially a weak interaction on magnetite.
Collapse
Affiliation(s)
- José Tadeu Gouvêa Junior
- Department of Mining and Petroleum Engineering, Polytechnic School, University of São Paulo, Avenida Professor Melo Moraes, 2373, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Vitalis Chipakwe
- Minerals and Metallurgical Engineering, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Laurindo de Salles Leal Filho
- Department of Mining and Petroleum Engineering, Polytechnic School, University of São Paulo, Avenida Professor Melo Moraes, 2373, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| | - Saeed Chehreh Chelgani
- Minerals and Metallurgical Engineering, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| |
Collapse
|
3
|
Turysbekov D, Tussupbayev N, Narbekova S, Kaldybayeva Z. Combined microflotation effects in polymetallic ores beneficiation. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
AbstractProducing of heterogeneous concentrates with good recovery in the processing of polymetallic ores is a challenge. Many factors must be taken into account including ore grinding, reagent mode, water composition, pulp density and the volume of supplied bubbles when producing high-quality selective concentrates. Microbubbles smaller than 50 μm in size were produced based on the frother oxal T-92 at different concentrations using a generator. The most optimal number of microbubbles smaller than 50 µm was produced at a T-92 concentration of 0.5 g/dm3. Polymetallic ore of Kazakhstan deposit was used for flotation studies. The studies were conducted in the copper-lead rough concentrate producing cycle. Flotation active minerals chalcopyrite and galena pass into the foam product, while sphalerite and pyrite remain in the chamber product in this cycle. In this paper, the density of pulp (20, 30 and 50%) as one of the main factors that effects the selectivity of flotation is studied. The kinetics of ore flotation in the base mode and with the use of a microbubble generator has been studied at these densities. Test experiments have been performed at the optimum density. The use of a water–air microemulsion generator makes it possible to maintain the quality of the copper-lead concentrate and increase the extraction of copper into the rough concentrate by 7.41%, lead by 5.98%.
Collapse
|
4
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
5
|
|
6
|
Verinda SB, Muniroh M, Yulianto E, Maharani N, Gunawan G, Amalia NF, Hobley J, Usman A, Nur M. Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis. Heliyon 2022; 8:e10137. [PMID: 36033314 PMCID: PMC9399964 DOI: 10.1016/j.heliyon.2022.e10137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 12/07/2022] Open
Abstract
Ciprofloxacin (CIP) has been listed in the last version of the surface water due to its ability to kill human cells by inhibiting the activity of DNA topoisomerase IV. Thus, CIP, along with other antibiotic pollution has become a serious threat to the environment and public health. Ozonation has been used as an advanced technique that is applied in wastewater treatment to remove CIP, but the primary limitation of this method is the low solubility of ozone in water. This study is the first report of CIP removal in a scale-up of its aqueous solution using a self-developed aerator pump-enhanced ozonation (APO) system, which only employs a propeller and a zigzag arrangement of meshes. This aerator pump decreased the size of ozone bubbles by 90% and increased the effective ozone solubility to 0.47 ppm. The mechanism of degradation of CIP is attributed to an oxidation reaction of the antibiotic with reactive oxygen species, such as hydroxyl, oxygen, and hydroperoxyl radicals, generated on the surface of the ozone microbubbles. It was found that the rate and efficiency of degradation of CIP using the APO system were 3.64 × 10−3/min and 83.5%, respectively, which is higher compared with those of conventional flow ozonation (FO) systems (1.47 × 10−3/min and 60.9%). The higher degradation efficiency of CIP by the APO system was also revealed by its higher electrical energy efficiency (0.146 g/kWh), compared to that of the FO system (0.106 g/kWh). The degradation of CIP was also monitored by the resulting antibacterial activity against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Sera Budi Verinda
- Biomedical Graduate Program, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Eko Yulianto
- Center for Plasma Research, Integrated Laboratory, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Gunawan Gunawan
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Nur Farida Amalia
- Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Muhammad Nur
- Center for Plasma Research, Integrated Laboratory, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia.,Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| |
Collapse
|
7
|
Enhancement of selective fine particle flotation by microbubbles generated through hydrodynamic cavitation. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation. MINERALS 2022. [DOI: 10.3390/min12040462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews recent developments in the fundamental understating of ultrafine (nano) bubbles (NBs) and presents technological advances and reagent types used for their generation in flotation. The generation of NBs using various approaches including ultrasonication, solvent exchange, temperature change, hydrodynamic cavitation, and electrolysis was assessed. Most importantly, restrictions and opportunities with respect to the detection of NBs were comprehensively reviewed, focusing on various characterization techniques such as the laser particle size analyzer (LPSA), nanoparticle tracking (NTA), dynamic light scattering (DLS), zeta-phase light scattering (ZPALS), and zeta sizer. As a key feature, types and possible mechanisms of surfactants applied to stabilize NBs were also explored. Furthermore, flotation-assisted nano-bubbles was reported as an efficient method for recovering minerals, with a special focus on flotation kinetics. It was found that most researchers reported the existence and formation of NBs by different techniques, but there is not enough information on an accurate measurement of their size distribution and their commonly used reagents. It was also recognized that a suitable method for generating NBs, at a high rate and with a low cost, remains a technical challenge in flotation. The application of hydrodynamic cavitation based on a venturi tube and using the LPSA and NTA in laboratory scales were identified as the most predominant approaches for the generation and detection of NBs, respectively. In this regard, neither pilot- nor industrial-scale case studies were found in the literature; they were only highlighted as future works. Although the NB-stabilizing effects of electrolytes have been well-explored, the mechanisms related to surfactants remain the issue of further investigation. The effectiveness of the NB-assisted flotation processes has been mostly addressed for single minerals, and only a few works have been reported for bulk materials. Finally, we believe that the current review paves the way for an appropriate selection of generating and detecting ultrafine bubbles and shines the light on a profound understanding of its effectiveness.
Collapse
|
9
|
Wang X, Yuan S, Liu J, Zhu Y, Han Y. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Chipakwe V, Sand A, Chelgani SC. Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore – Assessment of process readiness. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1981942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vitalis Chipakwe
- Minerals and Metallurgical Engineering, Dept. Of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anders Sand
- Process Technology, Boliden Mineral AB, Boliden, Sweden
| | - Saeed Chehreh Chelgani
- Minerals and Metallurgical Engineering, Dept. Of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
11
|
Abstract
Attachment of particles and droplets to bubbles—the latter being of various fine sizes and created by different techniques (as described in detail)—forms the basis of flotation, a process which indeed was originated from mineral processing. Nevertheless, chemistry often plays a significant role in this area, in order for separation to be effective, as stressed. This (brief) review particularly discusses wastewater treatment applications and the effect of bubble size (from nano- to micro-) on the flotation process.
Collapse
|
12
|
Chipakwe V, Jolsterå R, Chelgani SC. Nanobubble-Assisted Flotation of Apatite Tailings: Insights on Beneficiation Options. ACS OMEGA 2021; 6:13888-13894. [PMID: 34095680 PMCID: PMC8173614 DOI: 10.1021/acsomega.1c01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Processing of materials that originated from tailings of industrial plants (with a wide range of particle size distribution, "PSD") without grinding has several advantages since mines are faced with a lot of pressure to minimize their environmental impacts. This article indicates that the introduction of submicron bubbles (known as nanobubbles, "NBs") to conventional flotation could improve the separation efficiency of valuable minerals from their associated gangue phases. It was demonstrated that metallurgical responses (recovery, grade, selectivity, and kinetics) of NB flotation could improve compared to those of conventional tests. Various hydrodynamic cavitation setups for NB generation may lead to different metallurgical responses. In general, the addition of surfactants (frothers and collectors) for NB generation could increase both mass and water recoveries, which would be key factors on selectivity. Selectivity is also markedly dependent on the PSD of feed, and the selectivity of NB flotation is improved significantly by decreasing the feed size. In general, generation of NBs in the presence of a frother leads to higher flotation metallurgical responses than in the presence of a collector.
Collapse
Affiliation(s)
- Vitalis Chipakwe
- Minerals
and Metallurgical Engineering, Dept. of Civil, Environmental and Natural
Resources Engineering, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| | | | - Saeed Chehreh Chelgani
- Minerals
and Metallurgical Engineering, Dept. of Civil, Environmental and Natural
Resources Engineering, Luleå University
of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|