1
|
Cao KLA, Kautsar DB, Kume K, Cao KAL, Septiani EL, Hirano T, Tsunoji N, Matsukata M, Ogi T. Preparation of Hierarchical Porous Zeolite Particles with Multiscale Pore Architectures through a Template-Assisted Spray Process for Enhanced Toluene Adsorption Rate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24310-24326. [PMID: 40170413 DOI: 10.1021/acsami.4c22163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hierarchical porous zeolite particles featuring multiscale pore architectures have gained significant attention due to their enhanced mass transfer properties and superior adsorption capabilities. This study reports the first successful synthesis of hierarchical porous zeolites with integrated micropores, mesopores, and macropores using a template-assisted spray process, addressing the limitations of conventional zeolites in adsorbing large organic molecules such as toluene. By employing poly(methyl methacrylate) (PMMA) particles (about 350 nm in size) as a template, we achieved precise control over macropore formation, providing a new level of flexibility in tailoring zeolite pore architectures. The effect of the PMMA/zeolite mass ratio on the resulting macroporous structures and their toluene adsorption performance was systematically investigated. The results revealed that the hierarchical porous zeolite exhibited a significantly enhanced toluene adsorption rate compared to samples synthesized without the PMMA template. This improvement is attributed to the optimized macroporous structure, which facilitates efficient mass transfer. Importantly, this study addresses a critical gap in the literature by demonstrating the successful integration of macropores into zeolites through an environmentally friendly process, with significant implications for applications in volatile organic compound removal. This advancement in porous zeolite design could enable more efficient and practical solutions for industrial air purification and environmental remediation.
Collapse
Affiliation(s)
- Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Duhaul Biqal Kautsar
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kohei Kume
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Khoa Anh Le Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Masahiko Matsukata
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
2
|
Lima KVL, Nogueira RFP, Sousa ÉML, Simões MMQ, Lima DLD, Calisto V. Magnetic activated carbon for improving the removal of antibiotics by heterogeneous solar photo-Fenton at circumneutral pH. WATER RESEARCH 2025; 281:123679. [PMID: 40294504 DOI: 10.1016/j.watres.2025.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
A pulp and paper industry waste-based powder activated carbon combined with Fe nanoparticles (PAC-Fe) was obtained through a simple one-step synthesis for application in heterogeneous photo-Fenton treatment. PAC-Fe was characterized and applied for the removal of sulfamethoxazole (SMX) and trimethoprim (TMP) from water at circumneutral pH and under simulated solar irradiation. The contribution of the different processes involved in the overall removal of the contaminants (adsorption, Fenton and photo-Fenton) was evaluated. Degradation in both Fenton and photo-Fenton processes were fitted to the pseudo first-order and BMG kinetic models. Photo-Fenton resulted in the complete removal of SMX and TMP from water within 20 min. In contrast, in the absence of the material (H2O2 + UV), only 49 % and 59 % of SMX and TMP were removed, respectively, after the same time. The synthesis procedure allowed to obtain a PAC-Fe with a satisfactory saturation magnetization (21.14 emu g-1) and stability without any detectable leaching of iron during its application. The magnetic properties of PAC-Fe allowed for easy separation from the treated water, with degradation percentage above 50 % and 70 %, for SMX and TMP, respectively, after five consecutive cycles. The removal mechanisms involved a combination of different processes, with heterogeneous photo-Fenton and Fenton proving to be the most significant, followed by adsorption and photo-assisted peroxidation to a smaller extent. Eight transformation products of SMX were identified and fourteen for TMP, which were formed mainly by hydroxylation. The results achieved at pH close to neutral show that the PAC-Fe can be relevant for application in wastewater treatment.
Collapse
Affiliation(s)
- Karla V L Lima
- São Paulo State University (UNESP), Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Raquel F Pupo Nogueira
- São Paulo State University (UNESP), Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Érika M L Sousa
- CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- H&TRC - Health & Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Rua 5 de Outubro, 3045-043 Coimbra, Portugal.
| | - Vânia Calisto
- CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Septiani EL, Ogi T. Advances in Aerosol Nanostructuring: Functions and Control of Next-Generation Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26789-26799. [PMID: 39546762 DOI: 10.1021/acs.langmuir.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nanostructured particles (NSPs), with their remarkable properties at the nanoscale, possess key functions required for unlocking a sustainable future. Fabricating these particles using aerosol methods and spraying processes enables precise control over the particle morphology, structure, composition, and crystallinity during in-flight transformation. In this Perspective, the significant impact of NSPs on technological advancement for energy and environmental applications is discussed. Furthermore, incorporating in situ/operando assessment techniques alongside machine and deep learning is explored. Finally, the future development trends and the perspective on the advancing NSPs synthesis via aerosol process are elaborated for further driving innovations for supersmart and carbon-neutral society.
Collapse
Affiliation(s)
- Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
4
|
Su R, Xue R, Ma X, Zeng Z, Li L, Wang S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J Colloid Interface Sci 2024; 671:770-778. [PMID: 38830289 DOI: 10.1016/j.jcis.2024.05.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Porous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge. Here, nitrogen-doped hydrothermal carbon was prepared using urea-assisted hydrothermal method, and then porous carbon (PUC800) was prepared by KOH activation. The resulting material had 180 % higher pore volume and 179 % higher surface area compared to non-nitrogen activation methods. Then, using mechanochemical (mechanical compaction and KOH activation) approach to produce PUC800-3T, which had a 30 % increase in pore volume and a 33 % increase in surface area compared to PUC800. PUC800-3T showed benzene adsorption capacity of 4.2 mmol g-1 at 1 Pa and 5.8 mmol g-1 at 5 Pa. Experimental and molecular simulation indicate that the benzene adsorption at 1 and 5 Pa is determined by pore volume of less than 0.8 and 0.9 nm, respectively. Density functional theory calculations provided insight into the CH⋯X (X = N/O) interactions drive benzene adsorption on the carbon framework. This work provides valuable theoretical and experimental support for designing, preparing, and applying adsorbents for trace removal of benzene vapor.
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410083, Hunan, China
| | - Ruiqi Xue
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiancheng Ma
- College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, 108 King William Street, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Li HX, Shi WJ, Zhang X, Liu Y, Liu LY, Dou J. Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors. J Colloid Interface Sci 2024; 667:700-712. [PMID: 38670013 DOI: 10.1016/j.jcis.2024.04.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Aqueous zinc-ion capacitors (AZICs) are considered potential energy storage devices thanks to their ultrahigh power density, high safety, and extended cycling life. Carbon-based materials widely used as cathodes in AZICs face challenges, such as inappropriate pore sizes, poor electrolyte-electrode wettability, and insufficient vacancy defects and active sites. These limitations hinder efficient energy storage capacity and long-term stability. To address these issues, the B and F co-doped hierarchical porous carbon cathode materials (BFPC) are constructed through a facile annealing treatment process. The BFPC-2//Zn device exhibited high capacities of 222.4 and 118.3 mAh g-1 at current densities of 0.2 and 10 A g-1, respectively. Notably, the BFPC-2//Zn device demonstrated long-term cycling stability with a high capacity retention of 96.9 % after 20,000 cycles at 10 A g-1. Additionally, the assembled BFPC-2 based AZICs displayed a maximum energy density of 175.8 Wh kg-1 and an ultrahigh power density of 17.3 kW kg-1. Mechanism studies revealed that the exceptional energy storage ability and charge-transfer process of the BFPC cathode are attributed to the synergistic effect of B and F heteroatoms and the coupling effect between vacancy defects and pore size. This work presents a novel design strategy by incorporating B and F active sites into hierarchical porous carbon materials, providing enhanced energy storage capabilities for practical application in AZICs.
Collapse
Affiliation(s)
- Heng-Xiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Wen-Jing Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Xiaohua Zhang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ling-Yang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Feng N, Zhao X, Hu J, Tang F, Liang S, Wu Q, Zhang C. Recent advance in preparation of lignin nanoparticles and their medical applications: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155711. [PMID: 38749074 DOI: 10.1016/j.phymed.2024.155711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Lignin has attracted a lot of attention because it is non-toxic, renewable and biodegradable. Lignin nanoparticles (LNPs) have high specific surface area and specific surface charges. It provides LNPs with good antibacterial and antioxidant properties. LNPs preparation has become clear, however, the application remains in the early stages. PURPOSE A review centric research has been conducted, reviewing existing literature to accomplish a basic understanding of the medical applications of LNPs. METHODS Initially, we extensively counseled the heterogeneity of lignin from various sources. The size and morphology of LNPs from different preparation process were then discussed. Subsequently, we focused on the potential medical applications of LNPs, including drug delivery, wound healing, tissue engineering, and antibacterial agents. Lastly, we explained the significance of LNPs in terms of antibacterial, antioxidant and biocompatibility, especially highlighting the need for an integrated framework to understand a diverse range of medical applications of LNPs. RESULTS We outlined the chemical structure of different type of lignin, and highlighted the advanced methods for lignin nanoparticles preparation. Moreover, we provided an in-depth review of the potential applications of lignin nanoparticles in various medical fields, especially in drug carriers, wound dressings, tissue engineering components, and antimicrobial agents. CONCLUSION This review provides a detailed overview on the current state and progression of lignin nanoparticles for medical applications.
Collapse
Affiliation(s)
- Nianjie Feng
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiangdong Zhao
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiaxin Hu
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fei Tang
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuang Liang
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qian Wu
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China.
| |
Collapse
|
7
|
Ratnasari D, Septiani EL, Dani Nandiyanto AB, Le Anh Cao K, Okuda N, Matsumoto H, Hirano T, Ogi T. Nanostructuring silica-iron core-shell particles in a one-step aerosol process. RSC Adv 2024; 14:18171-18180. [PMID: 38854827 PMCID: PMC11155725 DOI: 10.1039/d4ra01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Silica-coated iron (Fe@SiO2) particles have attracted considerable interest as a potential powder core material due to their distinctive advantages, including higher magnetic saturation and enhanced electrical resistance. In this study, the submicron-sized core-shell Fe@SiO2 particles were successfully synthesized in a single step via an aerosol process using a spray pyrolysis method assisted by a swirler connector for the first time. Changing the reducing agent concentration (supplied H2) and tuning the number of core (Fe) particles were investigated to achieve the desired Fe@SiO2 particles. The results indicated that an excessive number of cores led to the appearance of FeO crystals due to insufficient reduction. Conversely, an insufficient number of cores resulted in a thicker SiO2 shell, which hindered the penetration of the supplied H2 gas. Furthermore, the produced Fe@SiO2 particles exhibited soft-ferromagnetic characteristics with an excellent magnetic saturation value of 2.04 T, which is close to the standard theoretical value of 2.15 T. This work contributes new insights into the production of core-shell Fe@SiO2 particles, expanding their applicability to advanced soft-magnetic materials.
Collapse
Affiliation(s)
- Delyana Ratnasari
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Asep Bayu Dani Nandiyanto
- Program Studi Kimia, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia Jl. Setiabudhi No 229 Bandung West Java 40154 Indonesia
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Nobuhiro Okuda
- Materials Research Center, Technology & Intellectual Property HQ, TDK Corporation 570-2 Matsugashita, Minami-Hadori Narita Chiba 286-8588 Japan
| | - Hiroyuki Matsumoto
- Materials Research Center, Technology & Intellectual Property HQ, TDK Corporation 570-2 Matsugashita, Minami-Hadori Narita Chiba 286-8588 Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8527 Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8527 Japan
| |
Collapse
|
8
|
Saipul Bahri NSN, Nguyen TT, Matsumoto K, Watanabe M, Morita Y, Septiani EL, Cao KLA, Hirano T, Ogi T. Controlling the Magnetic Responsiveness of Cellulose Nanofiber Particles Embedded with Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3227-3237. [PMID: 38627897 DOI: 10.1021/acsabm.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.
Collapse
Affiliation(s)
- Nur Syakirah Nabilah Saipul Bahri
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Tue Tri Nguyen
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Kohei Matsumoto
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Mai Watanabe
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Yuko Morita
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
9
|
Rodrigues JS, de S M de Freitas A, de Lima LF, Lopes HSM, Maciel CC, Fré LVBV, Pires AAF, de Lima VH, Oliveira VJR, de A Olivati C, Ferreira M, Riul A, Botaro VR. Synthesis of lignin-based carbon/graphene oxide foam and its application as sensors for ammonia gas detection. Int J Biol Macromol 2024; 268:131883. [PMID: 38677702 DOI: 10.1016/j.ijbiomac.2024.131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.
Collapse
Affiliation(s)
- Jéssica S Rodrigues
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil.
| | - Amanda de S M de Freitas
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José do Campos, SP, Brazil
| | - Lucas F de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Henrique S M Lopes
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil; Polymer Materials Characterization Laboratory (LCaMP), Technological College of Sorocaba (FATEC), Eng. Carlos Reinaldo Mendes, 2015, 18013-280 Sorocaba, SP, Brazil
| | - Cristiane C Maciel
- Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Lucas V B V Fré
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Ariane A F Pires
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vitor H de Lima
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vinicius J R Oliveira
- Department of Physics, Paulista State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Clarissa de A Olivati
- Department of Physics, Paulista State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Marystela Ferreira
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Antonio Riul
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Vagner R Botaro
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| |
Collapse
|
10
|
Xu J, Wang Y, Zhu M, Wang R, Jiang H, Bo D, Jin C, Liu X. Construction of Functional Phenolic Resin and Carbon Hollow Spheres by Manipulating Structural Inhomogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9039-9048. [PMID: 38635376 DOI: 10.1021/acs.langmuir.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Hollow carbonaceous spheres are extraordinarily attractive for their unique structural features and wide applications in various fields. Herein, a facile and effective synthesis methodology based on the extended Stöber process for construction of phenolic resin hollow spheres has been presented. Combined with a series of characterization techniques, the synthesis process was systematically investigated, and a possible synthesis mechanism was proposed. It is revealed that the structural inhomogeneity of the polymer product achieved by using dodecylamine and alkane is responsible for the formation of hollow architecture, which depends on spontaneous selective dissolution during the synthesis process. Different metal-doped carbonaceous hollow spheres can be obtained by introducing corresponding precursors into the synthetic system and meeting requirements of different application fields. This work presented a novel synthesis strategy of hollow carbonaceous spheres, which is significant for building a new platform of advanced functional carbon-based composites.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yuchen Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Mengxuan Zhu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Heng Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Dechen Bo
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Changzi Jin
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Xin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Le PH, Kitamoto Y, Yamashita S, Cao KLA, Hirano T, Amen TWM, Tsunoji N, Ogi T. Macropore-Size Engineering toward Enhancing the Catalytic Performance of CO Oxidation over Three-Way Catalyst Particles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54073-54084. [PMID: 37944066 DOI: 10.1021/acsami.3c11489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In recent years, transportation-related air pollution has escalated into a global concern, necessitating the development of a three-way catalyst (TWC) technology to address harmful emissions. However, the efficiency of TWC's performance in mitigating these emissions has been hindered because of limited mass transfer efficiency within their structures. Thus, this study attempted to overcome the existing issue by synthesizing a series of macroporous TWC particles exhibiting various macropore sizes via a template-assisted spray process, aiming to achieve optimal mass transfer efficiency and catalytic performance. The synthesis incorporated various template particles (size of 67-381 nm) to obtain various macroporous structures. Thereafter, these macroporous particles were assessed for their carbon monoxide (CO) oxidation performance, revealing a substantial influence of the macropore size on the catalytic performance of TWC structures. Interestingly, among the investigated samples, those containing the smallest and largest macropores demonstrated the highest CO oxidation performances. Based on these results, a plausible reactant diffusion mechanism was proposed to explain the effect of the macropore size on the diffusion efficiency within the macroporous structures. This work may have significant implications in optimizing the macroporous structure to enhance catalytic performance in the gas purification process.
Collapse
Affiliation(s)
- Phong Hoai Le
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Shunki Yamashita
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Tareq W M Amen
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| |
Collapse
|
12
|
Wang B, Zhang X, Zhou J, Wang X, Tan F, Xu J. Controllable synthesis of Fe 3C-reinforced petal-like lignin microspheres with boosted electrochemical performance and its application in high performance supercapacitors. Int J Biol Macromol 2023; 251:126325. [PMID: 37579896 DOI: 10.1016/j.ijbiomac.2023.126325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One more effective measure to solve the energy crisis caused by the shortage of fossil energy is to convert natural renewable resources into high-value chemical products for electrochemical energy storage. Lignin has broad application prospects in this field. In this paper, three kinds of lignin with different molecular weights were obtained by the ethanol/water grading of Kraft lignin (KL). Then, different surface morphology lignin microspheres were prepared by spray drying. Finally, petal-like microspheres were successfully prepared by mixing and grinding the above four kinds of surface morphology lignin microspheres with potassium ferrate and cyanogen chloride and carbonizing at 800 °C and were later used as electrode materials for supercapacitors. Compared with the other microspheres, LMS-F3@Fe3C has the highest specific surface area (1041.42 m2 g-1), the smallest pore size (2.36 nm) and the largest degree of graphitization (ID/IG = 1.06). At a current density of 1 A g-1, the maximum specific capacitance is 786.7 F g-1. At a power density of 1000 W kg-1, the high energy density of 83.3 Wh kg-1 is displayed. This work provides a novel approach to the modulation of surface morphology and structure of lignin microspheres.
Collapse
Affiliation(s)
- Bo Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaohan Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jingyu Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Kadota K, Tse JY, Fujita S, Suzuki N, Uchiyama H, Tozuka Y, Tanaka S. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. ACS APPLIED BIO MATERIALS 2023; 6:3451-3462. [PMID: 37184656 DOI: 10.1021/acsabm.3c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shuhei Fujita
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nao Suzuki
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
14
|
Rodrigues JS, de Freitas ADSM, Maciel CC, Guizani C, Rigo D, Ferreira M, Hummel M, Balakshin M, Botaro VR. Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications. Int J Biol Macromol 2023; 240:124460. [PMID: 37076061 DOI: 10.1016/j.ijbiomac.2023.124460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The rapid exhaustion of fossil fuels brings to the fore the need to search for energy efficient strategies. The conversion of lignin into advanced functional carbon-based materials is considered one of the most promising solutions for environmental protection and the use of renewable resources. This study analyzed the structure-performance correlation of carbon foams (CF) when lignin-phenol-formaldehyde (LPF) resins produced with different fractions of kraft lignin (KL) were employed as carbon source, and polyurethane foam (PU) as sacrificial mold. The lignin fractions employed were KL, fraction of KL insoluble in ethyl acetate (LFIns) and fraction of KL soluble in ethyl acetate (LFSol). The produced CFs were characterized by thermogravimetric analysis (TGA), X-ray diffractometry (XRD), Raman spectroscopy, 2D HSQC Nuclear magnetic resonance (NMR) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and electrochemical measurements. The results showed that when LFSol was employed as a partial substitute for phenol in LPF resin synthesis, the final performance of the produced CF was infinitely higher. The improved solubility parameters of LFSol along with the higher S/G ratio and β-O-4/α-OH content after fractionation were the key to produce CF with better carbon yields (54 %). The electrochemical measurements showed that LFSol presented the highest current density (2.11 × 10-4 mA.cm-2) and the lowest value of resistance to charge transfer (0.26 KΩ) in relation to the other samples, indicating that the process of electron transfer was faster in the sensor produced with LFSol. LFSol's potential for application as an electrochemical sensor was tested as a proof of concept and demonstrated excellent selectivity for the detection of hydroquinone in water.
Collapse
Affiliation(s)
- Jéssica S Rodrigues
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil.
| | - Amanda De S M de Freitas
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José do Campos, SP, Brazil
| | - Cristiane C Maciel
- Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Chamseddine Guizani
- Biorefining Chemistry Team, VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland; Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Davide Rigo
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Marystela Ferreira
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil; Science and Technology Institute of Sorocaba (ICTS), São Paulo State University (UNESP), Av. Três de Março, 511, 18087-180 Sorocaba, Brazil
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Mikhail Balakshin
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| | - Vagner R Botaro
- Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil
| |
Collapse
|
15
|
Nguyen TT, Toyoda Y, Saipul Bahri NSN, Rahmatika AM, Cao KLA, Hirano T, Takahashi K, Goi Y, Morita Y, Watanabe M, Ogi T. Tuning of water resistance and protein adsorption capacity of porous cellulose nanofiber particles prepared by spray drying with cross-linking reaction. J Colloid Interface Sci 2023; 630:134-143. [DOI: 10.1016/j.jcis.2022.10.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/21/2022]
|
16
|
Constructing monodisperse blueberry-like lignin-based porous carbon nanospheres for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Appiah ES, Dzikunu P, Mahadeen N, Ampong DN, Mensah-Darkwa K, Kumar A, Gupta RK, Adom-Asamoah M. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects. Molecules 2022; 27:6556. [PMID: 36235093 PMCID: PMC9571253 DOI: 10.3390/molecules27196556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.
Collapse
Affiliation(s)
- Eugene Sefa Appiah
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Perseverance Dzikunu
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Nashiru Mahadeen
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
- The Brew-Hammond Energy Centre, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi AK-448-7139, Ghana
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura 281406, India
| | - Ram K. Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg KS 66762, USA
| | - Mark Adom-Asamoah
- Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| |
Collapse
|
18
|
Synthesis of macroporous three-way catalysts via template-assisted spray process for enhancing mass transfer in gas adsorption. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rois MF, Ramadhani Alya Sasono S, Widiyastuti W, Nurtono T, Setyawan H. High-performance electrocatalyst made from lignosulfonate nanofiber composited with manganese dioxide without carbonation process. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Simple, additive-free, extra pressure-free process to direct convert lignin into carbon foams. Int J Biol Macromol 2022; 209:692-702. [PMID: 35429516 DOI: 10.1016/j.ijbiomac.2022.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
To achieve lignin valorization, we reported a simple method to direct covert lignin into carbon foam materials in this work. Unlike multiple steps required to fabricate traditional carbon foams from most of other precursors (often non-renewable), the approach herein required solely heating for carbon production. We found that the intrinsic features of lignin render the formation of lignin block meanwhile generate the porous structure under the invented heating course. Three key factors including glass transition temperature, crosslinking ability, and thermal stability of lignin were identified to determine the successful fabrication of lignin foam (i.e., precursor of carbon foam). Upon tuning the heating profile or fractionating the lignin, lignin foam with different morphologies and properties were obtained. After carbonization, the selected lignin-derived carbon foams possessed well porous structures with bulk densities of 0.52 or 0.62 g cm-3, superior integrity with strength properties of around 10 MPa, BET surface areas of 143.29 or 325.86 m2 g-1, and many other attractive properties. This work is expected to stimulate further seek of lignin valorization in carbon foam production.
Collapse
|
21
|
Nguyen TT, Miyauchi M, Rahmatika AM, Cao KLA, Tanabe E, Ogi T. Enhanced Protein Adsorption Capacity of Macroporous Pectin Particles with High Specific Surface Area and an Interconnected Pore Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14435-14446. [PMID: 35302745 DOI: 10.1021/acsami.1c22307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There has been much interest in developing protein adsorbents using nanostructured particles, which can be engineered porous materials with fine control of the surface and pore structures. A significant challenge in designing porous adsorbents is the high percentage of available binding sites in the pores owing to their large surface areas and interconnected pore networks. In this study, continuing the idea of using porous materials derived from natural polymers toward the goal of sustainable development, porous pectin particles are reported. The template-assisted spray drying method using calcium carbonate (CaCO3) as a template for pore formation was applied to prepare porous pectin particles. The specific surface area was controlled from 177.0 to 222.3 m2 g-1 by adjusting the CaCO3 concentration. In addition, the effects of a macroporous structure, the specific surface area, and an interconnected pore network on the protein (lysozyme) adsorption capacity and adsorption mechanism were investigated. All porous pectin particles performed rapid adsorption (∼65% total capacity within 5 min) and high adsorption capacity, increasing from 1543 to the highest value of 2621 mg g-1. The results are attributed to the high percentage of available binding sites located in the macropores owing to their large surface areas and interconnected pore networks. The macroporous particles obtained in this study showed a higher adsorption capacity (2621 mg g-1) for lysozyme than other adsorbents. Moreover, the rapid uptake and high performance of this material show its potential as an advanced adsorbent for various macromolecules in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Tue Tri Nguyen
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Masato Miyauchi
- Tobacco Science Research Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama 227-8512, Japan
| | - Annie M Rahmatika
- Department of Bioresources Technology and Veterinary, Vocational College, Gadjah Mada University, Sekip Unit 1 Catur Tunggal, Depok Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Eishi Tanabe
- Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 3-13-26 Kagamiyama, Higashihiroshima 739-0046, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
22
|
Kitamoto Y, Cao KLA, Le PH, Abdillah OB, Iskandar F, Ogi T. A Sustainable Approach for Preparing Porous Carbon Spheres Derived from Kraft Lignin and Sodium Hydroxide as Highly Packed Thin Film Electrode Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3540-3552. [PMID: 35258982 DOI: 10.1021/acs.langmuir.1c03489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.
Collapse
Affiliation(s)
- Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Phong Hoai Le
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Oktaviardi Bityasmawan Abdillah
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
23
|
Pang Z, Luo P, Wei C, Qin Z, Wei T, Hu Y, Wu H, Wei C. In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater. CHEMOSPHERE 2022; 291:132874. [PMID: 34774613 DOI: 10.1016/j.chemosphere.2021.132874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The Co/Ni-MOFs@CS composite derived from Co/Ni bimetallic organic framework was synthesized and characterized. Compared with a single O3 system, the synergy between carbon sphere (CS) and metal organic frameworks (MOFs) improved the electron transfer efficiency and the formation rate of •OH. The coexistence of Co and Ni in various valence states might accelerate the cyclic process of Co(II)/Co(III) and Ni(II)/Ni(III), thereby improving the catalytic activity. Taking levofloxacin as a model pollutant, the mechanism of catalytic process was discussed, and the catalytic reaction was successfully applied to the removal of residual organics in bio-treated coking wastewater (BTCW). The removal rates of chemical oxygen demand (COD) and total organic carbon (TOC) in 60 min were 50.85%-53.71% and 39.98%-43.48%. From the perspective of UV absorption and 3D EEM, catalytic ozonation was more conducive to breaking the electronic protection of inert organic molecules such as heterocyclic compounds, and achieving higher efficiency of mineralization. It provides a new idea for catalytic ozonation technology of wastewater treatment in the future from theory, technology and application.
Collapse
Affiliation(s)
- Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pei Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Tuo Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
|
25
|
Septiani EL, Kikkawa J, Cao KLA, Hirano T, Okuda N, Matsumoto H, Enokido Y, Ogi T. Direct synthesis of submicron FeNi particles via spray pyrolysis using various reduction agents. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|