1
|
Essam D, Ahmed AM, Abdel-Khaliek AA, Shaban M, Rabia M. One pot synthesis of poly m-toluidine incorporated silver and silver oxide nanocomposite as a promising electrode for supercapacitor devices. Sci Rep 2025; 15:2698. [PMID: 39837976 PMCID: PMC11750978 DOI: 10.1038/s41598-024-84848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-Ag2O) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials. The resulting structure of Ag-Ag2O minimizes ion diffusion distances, increases active sites, and accelerates redox reactions. The electrochemical response of PMT and PMT/Ag-Ag2O electrodes was evaluated in three different electrolyte solutions (Na2SO4, H2SO4, and HCl). The specific capacitance of PMT/Ag-Ag2O nanocomposite was found to be higher than that of PMT alone. Among the tested electrolytes, HCl exhibited the highest specific capacitance of 443 F g-1 at a gravimetric current density of 0.4 A g-1, surpassing H2SO4 (104 F g-1) and Na2SO4 (32 F g-1). Also, the PMT/Ag-Ag2O nanocomposite has demonstrated good cycling stability. It exhibited a high specific power density of 156 W Kg-1 and a specific energy density of 1.8 Wh Kg-1. These results highlight the potential of the prepared PMT/Ag-Ag2O nanocomposite as a nanoelectrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Abdel-Khaliek
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Al Madinah Al Monawara, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Chen X, Chen J, Cheng J, Chu R, Xing L, Sun Y, Wu J, Chen G, Xing T. Fabrication and Performance of a Silver Nanowire Silk Conductive Fabric. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22384-22393. [PMID: 39385514 DOI: 10.1021/acs.langmuir.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In this work, silk was selected as the substrate, and formic acid was utilized to create a rough texture on the silk. The conductive fabrics made from AgNWs and silk were created by applying multiple layers of silver nanowire dispersion onto the textured silk fabrics (SFs). The silk was immersed in a dispersion containing polydopamine (PDA), sericin (SE), tannic acid (TA), and silver nanowire under specific temperature conditions. After being cured at 120 °C, the three silver nanowire/silk fabrics (AgNWs/SFs), PDA/AgNWs/SF, SE/AgNWs/SF, and TA/AgNWs/SF, exhibited square resistances of 7.37, 540, and 200 Ω/sq, respectively. The method used to prepare the AgNW conductive SF is straightforward, resulting in fabrics that possess excellent thermal stability and resistance to washing. These fabrics also exhibit a range of useful properties, including conductivity, electrothermal capabilities, electrochemical functionality, human body sensing, hydrophobicity, and antimicrobial properties. These characteristics make them highly promising for various applications, such as human body motion detection, electronic textiles, electrothermal textiles, and antimicrobial applications.
Collapse
Affiliation(s)
- Xinpeng Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jiazhuang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jin Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Runshan Chu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Lili Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yurong Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jiabao Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Liang D, Chang Z, Chen Y, Chen J, Zhao H, Sha L, Guo D. High mass loading paper-based electrode material with cellulose fibers under coordination of zirconium oxyhydroxide nanoparticles and sulfosalicylic acid. Int J Biol Macromol 2023; 244:125414. [PMID: 37327930 DOI: 10.1016/j.ijbiomac.2023.125414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
With the rapid expansion of the flexible electronics market, it is critical to develop high-performance flexible energy storage electrode materials. Cellulose fibers, which are sustainable, low cost, and flexible, fully meet the requirements of flexible electrode materials, but they are electrically insulating and cause a decrease in energy density. In this study, high-performance paper-based flexible electrode materials (PANI:SSA/Zr-CFs) were prepared with cellulose fibers and polyaniline. A high mass loading of polyaniline was wrapped on zirconia hydroxide-modified cellulose fibers under metal-organic acid coordination through a facile in situ chemical polymerization process. The increase in mass loading of PANI on cellulose fibers not only improves the electrical conductivity but also enhances the area-specific capacitance of the flexible electrodes. The results of electrochemical tests show that the area specific capacitance of the PANI:SSA/Zr-CFs electrode is 4181 mF/cm2 at 1 mA/cm2, which is more than two times higher than that of the electrode with PANI on pristine CFs. This work provides a new strategy for the design and manufacture of high-performance flexible electronic electrodes based on cellulose fibers.
Collapse
Affiliation(s)
- Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Jianbin Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China; Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
4
|
Stupar SL, Bučko M, Karanović J, Lazić D, Dinić D, Tanić MN, Karkalić R. Silver Coated Textiles as Multifunctional Flexible Materials. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|