1
|
Han DT, Zhao W, Powell WH. Dioxin Disrupts Thyroid Hormone and Glucocorticoid Induction of klf9, a Master Regulator of Frog Metamorphosis. Toxicol Sci 2022; 187:150-161. [PMID: 35172007 PMCID: PMC9041550 DOI: 10.1093/toxsci/kfac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frog metamorphosis, the development of an air-breathing froglet from an aquatic tadpole, is controlled by thyroid hormone (TH) and glucocorticoids (GC). Metamorphosis is susceptible to disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AHR) agonist. Krüppel-like factor 9 (klf9), an immediate early gene in the endocrine-controlled cascade of expression changes governing metamorphosis, can be synergistically induced by both hormones. This process is mediated by an upstream enhancer cluster, the klf9 synergy module (KSM). klf9 is also an AHR target. We measured klf9 mRNA following exposures to triiodothyronine (T3), corticosterone (CORT), and TCDD in the Xenopus laevis cell line XLK-WG. klf9 was induced 6-fold by 50 nM T3, 4-fold by 100 nM CORT, and 3-fold by 175 nM TCDD. Cotreatments of CORT and TCDD or T3 and TCDD induced klf9 7- and 11-fold, respectively, whereas treatment with all 3 agents induced a 15-fold increase. Transactivation assays examined enhancers from the Xenopus tropicalis klf9 upstream region. KSM-containing segments mediated a strong T3 response and a larger T3/CORT response, whereas induction by TCDD was mediated by a region ∼1 kb farther upstream containing 5 AHR response elements (AHREs). This region also supported a CORT response in the absence of readily identifiable GC responsive elements, suggesting mediation by protein-protein interactions. A functional AHRE cluster is positionally conserved in the human genome, and klf9 was induced by TCDD and TH in HepG2 cells. These results indicate that AHR binding to upstream AHREs represents an early key event in TCDD's disruption of endocrine-regulated klf9 expression and metamorphosis.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- To whom correspondence should be addressed at Biology Department, Kenyon College, 202 N College Rd, Gambier, OH 43022. E-mail:
| |
Collapse
|
2
|
Martínez-Guitarte JL, Beltrán EM, González-Doncel M, García-Hortigüela P, Fernández A, Pablos MV. Effect assessment of reclaimed waters and carbamazepine exposure on the thyroid axis of Xenopus laevis: Gene expression modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118226. [PMID: 34563849 DOI: 10.1016/j.envpol.2021.118226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Reclaimed water (RW) obtained from wastewater treatment plants (WWTP) is used for irrigation, groundwater recharge, among other potential uses. Although most pollutants are removed, traces of them are frequently found, which can affect organisms and alter the environment. The presence of a myriad of contaminants in RW makes it a complex mixture with very diverse effects and interactions. A previous study, in which tadpoles were exposed to RW and RW spiked with Carbamazepine (CBZ), presented slight thyroid gland stimulation, as suggested by the development acceleration of tadpoles and histological findings in the gland provoked by RW, regardless of the CBZ concentration. To complement this study, the present work analysed the putative molecular working mechanism by selecting six genes coding for the thyroid-stimulating hormone (TSHβ), thyroid hormone metabolising enzymes (DIO2, DIO3), thyroid receptors (THRA, THRB), and a thyroid hormone-induced DNA binding protein (Kfl9). Transcriptional activity was studied by Real-Time PCR (RT-PCR) in brains, hind limbs, and tails on exposure days 1, 7, and 21. No significant differences were observed between treatments for each time point, but slight alterations were noted when the time response was analysed. The obtained results indicate that the effects of RW or RW spiked with CBZ are negligible for the genes analysed during the selected exposure periods.
Collapse
Affiliation(s)
- José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - Eulalia María Beltrán
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Pilar García-Hortigüela
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Amanda Fernández
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - María Victoria Pablos
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Maher SK, Wojnarowicz P, Ichu TA, Veldhoen N, Lu L, Lesperance M, Propper CR, Helbing CC. Rethinking the biological relationships of the thyroid hormones, l-thyroxine and 3,5,3′-triiodothyronine. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 18:44-53. [DOI: 10.1016/j.cbd.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/27/2016] [Accepted: 04/03/2016] [Indexed: 11/16/2022]
|
5
|
Veldhoen N, Propper CR, Helbing CC. Enabling comparative gene expression studies of thyroid hormone action through the development of a flexible real-time quantitative PCR assay for use across multiple anuran indicator and sentinel species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:162-173. [PMID: 24503578 DOI: 10.1016/j.aquatox.2014.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Studies performed across diverse frog species have made substantial contributions to our understanding of basic vertebrate development and the natural or anthropogenic environmental factors impacting sensitive life stages. Because, anurans are developmental models, provide ecosystems services, and act as sentinels for the identification of environmental chemical contaminants that interfere with thyroid hormone (TH) action during postembryonic development, there is demand for flexible assessment techniques that can be applied to multiple species. As part of the "thyroid assays across indicator and sentinel species" (TAXISS) initiative, we have designed and validated a series of cross-species real time quantitative PCR (qPCR) primer sets that provide information on transcriptome components in evolutionarily distant anurans. Validation for fifteen gene transcripts involved a rigorous three-tiered quality control within tissue/development-specific contexts. Assay performance was confirmed on multiple tissues (tail fin, liver, brain, and intestine) of Rana catesbeiana and Xenopus laevis tadpoles enabling comparisons between tissues and generation of response profiles to exogenous TH. This revealed notable differences in TH-responsive gene transcripts including thra, thrb, thibz, klf9, col1a2, fn1, plp1, mmp2, timm50, otc, and dio2, suggesting differential regulation and susceptibility to contaminant effects. Evidence for the applicability of the TAXISS anuran qPCR assay across seven other species is also provided with five frog families represented and its utility in defining genome structure was demonstrated. This novel validated approach will enable meaningful comparative studies between frog species and aid in extending knowledge of developmental regulatory pathways and the impact of environmental factors on TH signaling in frog species for which little or no genetic information is currently available.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada V8W 2Y2
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, S. Beaver St., Flagstaff, AZ 86011, USA
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada V8W 2Y2.
| |
Collapse
|
6
|
Coady KK, Lehman CM, Currie RJ, Marino TA. Challenges and Approaches to Conducting and Interpreting the Amphibian Metamorphosis Assay and the Fish Short‐Term Reproduction Assay. ACTA ACUST UNITED AC 2013; 101:80-9. [DOI: 10.1002/bdrb.21081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/13/2013] [Indexed: 11/07/2022]
|
7
|
Johansson F, Veldhoen N, Lind MI, Helbing CC. Phenotypic plasticity in the hepatic transcriptome of the European common frog (Rana temporaria): the interplay between environmental induction and geographical lineage on developmental response. Mol Ecol 2013; 22:5608-23. [DOI: 10.1111/mec.12497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/11/2013] [Accepted: 08/15/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Johansson
- Animal Ecology; Department of Ecology and Genetics; Uppsala University; 75105 Uppsala Sweden
| | - Nik Veldhoen
- Department of Biochemistry & Microbiology; University of Victoria; P.O. Box 3055, Stn CSC Victoria British Colombia V8W 3P6 Canada
| | - Martin I. Lind
- Animal Ecology; Department of Ecology and Genetics; Uppsala University; 75105 Uppsala Sweden
| | - Caren C. Helbing
- Department of Biochemistry & Microbiology; University of Victoria; P.O. Box 3055, Stn CSC Victoria British Colombia V8W 3P6 Canada
| |
Collapse
|
8
|
Hammond SA, Veldhoen N, Kobylarz M, Webber NR, Jordan J, Rehaume V, Boone MD, Helbing CC. Characterization of Gene Expression Endpoints During Postembryonic Development of the Northern Green Frog (Rana clamitans melanota). Zoolog Sci 2013; 30:392-401. [DOI: 10.2108/zsj.30.392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- S. Austin Hammond
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | - Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | - Marek Kobylarz
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | - Nicholas R. Webber
- Department of Zoology, Miami University, 212 Pearson Hall, Oxford, OH 45056, USA
| | - Jameson Jordan
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | - Vicki Rehaume
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | - Michelle D. Boone
- Department of Zoology, Miami University, 212 Pearson Hall, Oxford, OH 45056, USA
| | - Caren C. Helbing
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| |
Collapse
|
9
|
Marlatt VL, Veldhoen N, Lo BP, Bakker D, Rehaume V, Vallée K, Haberl M, Shang D, van Aggelen GC, Skirrow RC, Elphick JR, Helbing CC. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:85-94. [PMID: 23159728 DOI: 10.1016/j.aquatox.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T(4)), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T(4)/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T(4) treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T(4). The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.
Collapse
|
10
|
Kulkarni SS, Buchholz DR. Beyond synergy: corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology 2012; 153:5309-24. [PMID: 22968645 DOI: 10.1210/en.2012-1432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hormones play critical roles in vertebrate development, and frog metamorphosis has been an excellent model system to study the developmental roles of thyroid hormone (TH) and glucocorticoids. Whereas TH regulates the initiation and rate of metamorphosis, the actions of corticosterone (CORT; the main glucocorticoid in frogs) are more complex. In the absence of TH during premetamorphosis, CORT inhibits development, but in the presence of TH during metamorphosis, CORT synergizes with TH to accelerate development. Synergy at the level of gene expression is known for three genes in frogs, but the nature and extent of TH and CORT cross talk is otherwise unknown. Therefore, to examine TH and CORT interactions, we performed microarray analysis on tails from Xenopus tropicalis tadpoles treated with CORT, TH, CORT+TH, or vehicle for 18 h. The expression of 5432 genes was significantly altered in response to either or both hormones. Using Venn diagrams and cluster analysis, we identified 16 main patterns of gene regulation due to up- or down-regulation by TH and/or CORT. Many genes were affected by only one of the hormones, and a large proportion of regulated genes (22%) required both hormones. We also identified patterns of additive or synergistic, inhibitory, subtractive, and annihilatory regulation. A total of 928 genes (17%) were regulated by novel interactions between the two hormones. These data expand our understanding of the hormonal cross talk underlying the gene regulation cascade directing tail resorption and suggest the possibility that CORT affects not only the timing but also the nature of TH-dependent tissue transformation.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Department of Biological Sciences, University of Cincinnati, Ohio 45221, USA
| | | |
Collapse
|
11
|
Searcy BT, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Stafford P, Schwendiman AL, Soto-Pena J, Owen MC, Ramirez C, Phillips J, Veldhoen N, Helbing CC, Propper CR. Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent. Gen Comp Endocrinol 2012; 176:481-92. [PMID: 22248444 DOI: 10.1016/j.ygcen.2011.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/27/2011] [Indexed: 11/20/2022]
Abstract
Because thyroid hormones (THs) are conserved modulators of development and physiology, identification of compounds adversely affecting TH signaling is critical to human and wildlife health. Anurans are an established model for studying disruption of TH signaling because metamorphosis is dependent upon the thyroid system. In order to strengthen this model and identify new gene transcript biomarkers for TH disruption, we performed DNA microarray analysis of Xenopus laevis tadpole tail transcriptomes following treatment with triiodothyronine (T(3)). Comparison of these results with previous studies in frogs and mammals identified 36 gene transcripts that were TH-sensitive across clades. We then tested molecular biomarkers for sensitivity to disruption by exposure to wastewater effluent (WWE). X. laevis tadpoles, exposed to WWE from embryo through metamorphosis, exhibited an increased developmental rate compared to controls. Cultured tadpole tails showed dramatic increases in levels of four TH-sensitive gene transcripts (thyroid hormone receptor β (TRβ), deiodinase type II (DIO2), and corticotropin releasing hormone binding protein (CRHBP), fibroblast activation protein α (FAPα)) when exposed to T(3) and WWE extracts. TRβ, DIO2, and CRHBP were identified as TH sensitive in other studies, while FAPα mRNA transcripts were highly TH sensitive in our array. The results validate the array and demonstrate TH-disrupting activity by WWE. Our findings demonstrate the usefulness of cross-clade analysis for identification of gene transcripts that provide sensitivity to endocrine disruption. Further, the results suggest that development is disrupted by exposure to complex mixes of compounds found in WWE possibly through interference with TH signaling.
Collapse
Affiliation(s)
- Brian T Searcy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hinther A, Edwards TM, Guillette LJ, Helbing CC. Influence of Nitrate and Nitrite on Thyroid Hormone Responsive and Stress-Associated Gene Expression in Cultured Rana catesbeiana Tadpole Tail Fin Tissue. Front Genet 2012; 3:51. [PMID: 22493607 PMCID: PMC3318185 DOI: 10.3389/fgene.2012.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Abstract
Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although whether the effect is acceleration or deceleration of this developmental process varies from study to study. One mechanism of action of these nitrogenous compounds is through alteration of TH synthesis. However, direct target tissue effects on TH signaling are hypothesized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50 mg/L nitrate (NO(3)-N) and 0.5 and 5 mg/L nitrite (NO(2)-N) in the absence and presence of 10 nM T(3). Thyroid hormone receptor β (TRβ) and Rana larval keratin type I (RLKI), both of which are TH-responsive gene transcripts, were measured using quantitative real time polymerase chain reaction. To assess cellular stress which could affect TH signaling and metamorphosis, heat shock protein 30, and catalase (CAT) transcript levels were also measured. We found that nitrate and nitrite did not significantly change the level of any of the four transcripts tested. However, nitrate exposure significantly increased the heteroscedasticity in response of TRβ and RLKI transcripts to T(3). Alteration in population variation in such a way could contribute to the previously observed alterations of metamorphosis in frog tadpoles, but may not represent a major mechanism of action.
Collapse
Affiliation(s)
- Ashley Hinther
- Department of Biochemistry and Microbiology, University of Victoria Victoria, BC, Canada
| | | | | | | |
Collapse
|
13
|
Helbing CC, Wagner MJ, Pettem K, Johnston J, Heimeier RA, Veldhoen N, Jirik FR, Shi YB, Browder LW. Modulation of thyroid hormone-dependent gene expression in Xenopus laevis by INhibitor of Growth (ING) proteins. PLoS One 2011; 6:e28658. [PMID: 22163049 PMCID: PMC3230625 DOI: 10.1371/journal.pone.0028658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND INhibitor of Growth (ING) proteins belong to a large family of plant homeodomain finger-containing proteins important in epigenetic regulation and carcinogenesis. We have previously shown that ING1 and ING2 expression is regulated by thyroid hormone (TH) during metamorphosis of the Xenopus laevis tadpole. The present study investigates the possibility that ING proteins modulate TH action. METHODOLOGY/PRINCIPAL FINDINGS Tadpoles expressing a Xenopus ING2 transgene (Trans(ING2)) were significantly smaller than tadpoles not expressing the transgene (Trans(GFP)). When exposed to 10 nM 3,5,3'-triiodothyronine (T(3)), premetamorphic Trans(ING2) tadpoles exhibited a greater reduction in tail, head, and brain areas, and a protrusion of the lower jaw than T(3)-treated Trans(GFP) tadpoles. Quantitative real time polymerase chain reaction (QPCR) demonstrated elevated TH receptor β (TRβ) and TH/bZIP transcript levels in Trans(ING2) tadpole tails compared to Trans(GFP) tadpoles while TRα mRNAs were unaffected. In contrast, no difference in TRα, TRβ or insulin-like growth factor (IGF2) mRNA abundance was observed in the brain between Trans(ING2) and Trans(GFP) tadpoles. All of these transcripts, except for TRα mRNA in the brain, were inducible by the hormone in both tissues. Oocyte transcription assays indicated that ING proteins enhanced TR-dependent, T(3)-induced TRβ gene promoter activity. Examination of endogenous T(3)-responsive promoters (TRβ and TH/bZIP) in the tail by chromatin immunoprecipitation assays showed that ING proteins were recruited to TRE-containing regions in T(3)-dependent and independent ways, respectively. Moreover, ING and TR proteins coimmunoprecipitated from tail protein homogenates derived from metamorphic climax animals. CONCLUSIONS/SIGNIFICANCE We show for the first time that ING proteins modulate TH-dependent responses, thus revealing a novel role for ING proteins in hormone signaling. This has important implications for understanding hormone influenced disease states and suggests that the induction of ING proteins may facilitate TR function during metamorphosis in a tissue-specific manner.
Collapse
Affiliation(s)
- Caren C. Helbing
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| | - Mary J. Wagner
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Pettem
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jill Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Rachel A. Heimeier
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Frank R. Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leon W. Browder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Hinther A, Vawda S, Skirrow RC, Veldhoen N, Collins P, Cullen JT, van Aggelen G, Helbing CC. Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8314-8321. [PMID: 20929207 DOI: 10.1021/es101902n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanometals are manufactured to particle sizes with diameters in the nanometer range and are included in a variety of consumer and health products. There is a lack of information regarding potential effects of these materials on aquatic organisms. Amphibians are regarded as environmental sentinels and demonstrate an exquisite sensitivity to thyroid hormone action, a hormone that is essential for human health. This present study assessed the effect of exposure to nanometals on stress and thyroid hormone signaling in frog tissue using a cultured tail fin biopsy (C-fin) assay derived from Rana catesbeiana tadpoles. The C-fin assay maintains tissue complexity and biological replication while multiple chemical responses can be assessed from the same individual. We tested the ability of nanosilver (0.06 μg/L-5.5 mg/L), quantum dots (0.25 μg/L-22 mg/L), and nanozinc oxide (0.19-10 mg/L) to alter gene expression in the presence or absence of 3,3',5'-triiodothyronine (T(3)) using quantitative real-time polymerase chain reaction. Results were compared to exposure to micrometer-silver, silver nitrate, and micrometer-cadmium telluride. Nanosilver (≥2.75 mg/L) and quantum dots (≥0.22 mg/L) altered the expression of transcripts linked to T(3)- and stress-mediated pathways, while nanozinc oxide had no effect. Lower concentrations of nanosilver (0.6 to 550 μg/L) perturbed T(3)-mediated signaling while not inducing cell stress. The observed effects were orders of magnitude below acute toxicity levels and occurred at or below the current North American water quality guidelines for metals, underscoring the need for evaluating nanoparticles separately from their constituent chemicals.
Collapse
Affiliation(s)
- Ashley Hinther
- Department of Biochemistry & Microbiology, P.O. Box 3055 Stn CSC, University of Victoria, Victoria, B.C., Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Heimeier RA, Shi YB. Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol A on thyroid hormone action. Gen Comp Endocrinol 2010; 168:181-9. [PMID: 20178801 DOI: 10.1016/j.ygcen.2010.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Thyroid hormone (TH) is essential for proper development in vertebrates. TH deficiency during gestation and early postnatal development produces severe neurological, skeletal, metabolism and growth abnormalities. It is therefore important to consider environmental chemicals that may interfere with TH signaling. Exposure to environmental contaminants that disrupt TH action may underlie the increasing incidence of human developmental disorders worldwide. One contaminant of concern is the xenoestrogen bisphenol A (BPA), a chemical widely used to manufacture polycarbonate plastics and epoxy resins. The difficulty in studying uterus-enclosed mammalian embryos has hampered the analysis on the direct effects of BPA during vertebrate development. As TH action at the cellular level is highly conserved across vertebrate species, amphibian metamorphosis serves as an important TH-dependent in vivo vertebrate model for studying potential contributions of BPA toward human developmental disorders. Using Xenopus laevis as a model, we and others have demonstrated the inhibitory effects of BPA exposure on metamorphosis. Genome-wide gene expression analysis revealed that surprisingly, BPA primarily targets the TH-signaling pathway essential for metamorphosis in Xenopus laevis. Given the importance of the genomic effects of TH during metamorphosis and the conservation in its regulation in higher vertebrates, these observations suggest that the effect of BPA in human embryogenesis is through the inhibition of the TH pathway and warrants further investigation. Our findings further argue for the critical need to use in vivo animal models coupled with systematic molecular analysis to determine the developmental effects of endocrine disrupting compounds.
Collapse
Affiliation(s)
- Rachel A Heimeier
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Helbing CC, Maher SK, Han J, Gunderson MP, Borchers C. Peering into molecular mechanisms of action with frogSCOPE. Gen Comp Endocrinol 2010; 168:190-8. [PMID: 20074577 DOI: 10.1016/j.ygcen.2010.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/08/2010] [Indexed: 12/12/2022]
Abstract
Exposure of critical life stages to harmful chemicals at low, environmentally-relevant concentrations can alter how hormones function, and change metabolic pathways or developmental processes that impact reproduction, behavior, or susceptibility to disease later in life. These alterations can be captured through evaluation of changes to transcriptomes, proteomes, and metabolomes occurring at those critical life stages thereby enabling more effective and earlier identification of mechanism of action, individual susceptibilities and adaptation, and prediction of detrimental sublethal effects. Amphibians are "wet canaries in the coalmine" as indicators for environmental health. There are more than 6000 species living in a variety of ecological niches worldwide yet limited 'omics resources and approaches exist. To provide for a means of addressing this challenge, frogSCOPE (frog Sentinel species Comparative "Omics" for the Environment) combines transcriptomics, proteomics, and metabolomics together to form the foundation for the identification of biological response indicators of harmful effects on a species of wild frog (Rana catesbeiana) at a sensitive tadpole stage. Various exposure and sampling methodologies are possible including standard in vivo exposures, tail fin biopsies, and the C-fin assay. frogSCOPE establishes methodological and analytical approaches applicable to wildlife by using a uniquely-designed frog cDNA array developed to accommodate cross-species hybridization and quantitative real-time polymerase chain reaction (QPCR) assays on poorly genetically-characterized wildlife species. Combination with proteomics (isobaric tags for relative and absolute protein quantitation; iTRAQ) and metabolomics (mass spectrometry) enable the generation of molecular fingerprints to identify mechanisms of action in a more comprehensive fashion to better define suitable indicators of deleterious biological outcomes to wildlife.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, BC, Canada.
| | | | | | | | | |
Collapse
|
17
|
In vivo assessment and potential diagnosis of xenobiotics that perturb the thyroid pathway: Proteomic analysis of Xenopus laevis brain tissue following exposure to model T4 inhibitors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:138-50. [PMID: 20452843 DOI: 10.1016/j.cbd.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 02/08/2023]
Abstract
As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression patterns in the brain of the amphibian model (Xenopus laevis) following in vivo exposure to a suite of T4 synthesis inhibitors. We specifically address the application of Two Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE), Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and LC-MS/MS to assess changes in relative protein expression levels. 2D PAGE and iTRAQ proved to be effective complementary techniques for distinguishing protein changes in the developing amphibian brain in response to T4 synthesis inhibition. This information served to evaluate the use of distinctive protein profiles as a potential mechanism to screen chemicals for endocrine activity in anurans. Regulatory pathways associated with proteins expressed as a result of chemical effect are reported. To our knowledge, this is also the first account of the anuran larvae brain proteome characterization using proteomic technologies. Correlation of protein changes to other cellular and organism-level responses will aid in the development of a more rapid and cost-effective, non-mammalian screening assay for thyroid axis-disrupting chemicals.
Collapse
|
18
|
Hinther A, Domanski D, Vawda S, Helbing CC. C-fin: a cultured frog tadpole tail fin biopsy approach for detection of thyroid hormone-disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:380-388. [PMID: 20821457 DOI: 10.1002/etc.44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
There is a need for the development of a rapid method for identifying chemicals that disrupt thyroid hormone (TH) action while maintaining complex tissue structure and biological variation. Moreover, no assay to date allows a simultaneous screen of an individual's response to multiple chemicals. A cultured tail fin biopsy or C-fin assay was developed using Rana catesbeiana tadpoles. Multiple tail fin biopsies were taken per tadpole, cultured in serum-free medium, and then each biopsy was exposed to a different treatment condition. The effects of known disruptors of TH action were evaluated in the C-fin assay. Chemical exposure was performed +/- 10 nM 3,3',5-triiodothyronine and real-time quantitative polymerase chain reaction (QPCR) of two TH-responsive transcripts, TH receptor beta (TRbeta) and the Rana larval keratin type I (RLKI), was performed. Within 48 h of exposure to Triac (1-100 nM), roscovitine (0.6-60 microM), or genistein (1-100 microM), perturbations in TH signaling were detected. Tetrabromobisphenol A (TBBPA) (10-1,000 nM) showed no effect. Acetochlor (1-100 nM) elicited a modest effect on the TH-dependent induction of TRbeta transcript. These data reveal that a direct tissue effect may not be critical for TBBPA and acetochlor to disrupt TH action previously observed in intact tadpoles.
Collapse
Affiliation(s)
- Ashley Hinther
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Dominik Domanski
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Saadia Vawda
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
19
|
Page RB, Voss SR, Samuels AK, Smith JJ, Putta S, Beachy CK. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma). BMC Genomics 2008; 9:78. [PMID: 18267027 PMCID: PMC2262897 DOI: 10.1186/1471-2164-9-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/11/2008] [Indexed: 11/24/2022] Open
Abstract
Background Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Results Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively. Conclusion We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.
Collapse
Affiliation(s)
- Robert B Page
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506 USA .
| | | | | | | | | | | |
Collapse
|
20
|
Helbing CC, Bailey CM, Ji L, Gunderson MP, Zhang F, Veldhoen N, Skirrow RC, Mu R, Lesperance M, Holcombe GW, Kosian PA, Tietge J, Korte JJ, Degitz SJ. Identification of gene expression indicators for thyroid axis disruption in a Xenopus laevis metamorphosis screening assay. Part 1. Effects on the brain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:227-41. [PMID: 17403546 DOI: 10.1016/j.aquatox.2007.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 05/14/2023]
Abstract
Thyroid hormones (TH), thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)), play crucial roles in regulation of growth, development and metabolism in vertebrates and their actions are targets for endocrine disruptive agents. Perturbations in TH action can contribute to the development of disease states and the US Environmental Protection Agency is developing a high throughput screen using TH-dependent amphibian metamorphosis as an assay platform. Currently this methodology relies on external morphological endpoints and changes in central thyroid axis parameters. However, exposure-related changes in gene expression in TH-sensitive tissue types that occur over shorter time frames have the potential to augment this screen. This study aims to characterize and identify molecular markers in the tadpole brain. Using a combination of cDNA array analysis and real time quantitative polymerase chain reaction (QPCR), we examine the brain of tadpoles following 96 h of continuous exposure to T(3), T(4), methimazole, propylthiouracil, or perchlorate. This tissue was more sensitive to T(4) rather than T(3), even when differences in biological activity were taken into account. This implies that a simple conversion of T(4) to T(3) cannot fully account for T(4) effects on the brain and suggests distinctive mechanisms of action for the two THs. While the brain shows gene expression alterations for methimazole and propylthiouracil, the environmental contaminant, perchlorate, had the greatest effect on the levels of mRNAs encoding proteins important in neural development and function. Our data identify gene expression profiles that can serve as exposure indicators of these chemicals.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry and Microbiology, PO Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|