1
|
Ferraro A, Siciliano A, Spampinato M, Morello R, Trancone G, Race M, Guida M, Fabbricino M, Spasiano D, Fratino U. A multi-disciplinary approach based on chemical characterization of foreshore sediments, ecotoxicity assessment and statistical analyses for environmental monitoring of marine-coastal areas. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106780. [PMID: 39406169 DOI: 10.1016/j.marenvres.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
The present work aims at providing a multi-disciplinary approach for environmental monitoring in marine-coastal areas. A monitoring campaign of 13 months (October 2022-October 2023) was carried out on sandy foreshore sediments (SFSs). The SFSs were analysed for potentially toxic elements (PTEs) and rare earth elements (REEs) content determination. In the investigated area, variable contamination trends were assessed through Friedman and Nemenyi tests. Further results also indicated the usefulness of statistical data elaboration in the identification of potential contamination sources. In fact, from Spearman test, significant positive correlations (between 0.650 and 0.981) were observed among PTEs of possible anthropogenic origin (such as Co, Cr, Cu, Pb, V, and Zn). For REEs, La and Nd showed strong correlations with Ce (0.909 and 0.920, respectively). The study also integrated luminescence inhibition (Aliivibrio fischeri), algal growth inhibition (Phaeodactylum tricornutum), and embryotoxicity assessment (Paracentrotus lividus) on sediment elutriates showing varying degrees of toxicity. Also these data were analysed through statistics in order to highlight possible correlations between contaminants and observed ecotoxicological effects on the involved bioindicators. The results outline an approach useful for more comprehensive monitoring of marine areas quality and identification of suitable environmental restoration strategies.
Collapse
Affiliation(s)
- Alberto Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy
| | - Marisa Spampinato
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Raffaele Morello
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Gennaro Trancone
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, Naples, 80126, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
2
|
Broman E, Abdelgadir M, Bonaglia S, Forsberg SC, Wikström J, Gunnarsson JS, Nascimento FJA, Sjöling S. Long-Term Pollution Does Not Inhibit Denitrification and DNRA by Adapted Benthic Microbial Communities. MICROBIAL ECOLOGY 2023; 86:2357-2372. [PMID: 37222807 PMCID: PMC10640501 DOI: 10.1007/s00248-023-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Denitrification in sediments is a key microbial process that removes excess fixed nitrogen, while dissimilatory nitrate reduction to ammonium (DNRA) converts nitrate to ammonium. Although microorganisms are responsible for essential nitrogen (N) cycling, it is not yet fully understood how these microbially mediated processes respond to toxic hydrophobic organic compounds (HOCs) and metals. In this study, we sampled long-term polluted sediment from the outer harbor of Oskarshamn (Baltic Sea), measured denitrification and DNRA rates, and analyzed taxonomic structure and N-cycling genes of microbial communities using metagenomics. Results showed that denitrification and DNRA rates were within the range of a national reference site and other unpolluted sites in the Baltic Sea, indicating that long-term pollution did not significantly affect these processes. Furthermore, our results indicate an adaptation to metal pollution by the N-cycling microbial community. These findings suggest that denitrification and DNRA rates are affected more by eutrophication and organic enrichment than by historic pollution of metals and organic contaminants.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden.
| | - Mohanad Abdelgadir
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, Gothenburg University, 413 19, Gothenburg, Sweden
| | - Sara C Forsberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| | - Johan Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonas S Gunnarsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sara Sjöling
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89, Huddinge, Sweden
| |
Collapse
|
3
|
Pizarro L, Magalhães C, Almeida CMR, Carvalho MDF, Semedo M. Cadmium effects on net N2O production by the deep-sea isolate Shewanella loihica PV-4. FEMS Microbiol Lett 2023; 370:fnad047. [PMID: 37279908 PMCID: PMC10337742 DOI: 10.1093/femsle/fnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Deep-sea mining may lead to the release of high concentrations of metals into the surrounding seabed, which can disturb important ecosystem functions provided by microbial communities. Among these, the production of N2O and its reduction to N2 is of great relevance since N2O is an important greenhouse gas. Metal impacts on net N2O production by deep-sea bacteria are, however, currently unexplored. Here, we evaluated the effects of cadmium (Cd) on net N2O production by a deep-sea isolate, Shewanella loihica PV-4. We performed a series of Cd exposure incubations in oxic conditions and determined N2O fluxes during induced anoxic conditions, as well as the relative expression of the nitrite reductase gene (nirK), preceding N2O production, and N2O reductase gene (nosZ), responsible for N2O reduction. Net N2O production by S. loihica PV-4 exposed to Cd was strongly inhibited when compared to the control treatment (no metal). Both nirK and nosZ gene expression were inhibited in reactors with Cd, but nirK inhibition was stronger, supporting the lower net N2O production observed with Cd. The Cd inhibition of net N2O production observed in this study poses the question whether other deep-sea bacteria would undergo the same effects. Future studies should address this question as well as its applicability to complex communities and other physicochemical conditions, which remain to be evaluated.
Collapse
Affiliation(s)
- Leonor Pizarro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Faculty of Biotechnology, Catholic University of Portugal, Porto 4169-005, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Biology, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - Maria de Fátima Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
| |
Collapse
|
4
|
Zhang M, Sun Q, Chen P, Wei X, Wang B. How microorganisms tell the truth of potentially toxic elements pollution in environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128456. [PMID: 35219059 DOI: 10.1016/j.jhazmat.2022.128456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic elements (PTEs) posed a major hazard to microbial community in river sediments, but the way how different kinds of microorganisms responses to elements pollution has not been clearly understood. The target of this research was to discriminate the apposite indicators for diagnosing elements pollution based on the sensitivity of microbial abundance, biodiversity, predicted metabolic functions to PTEs (Cu, Cd, Cr, Ni, Pb, Zn, As and Hg). Considering Huaihe River Basin as the main subject, sediment samples were gathered from 135 sites. Ni, Zn and Cd significantly influenced the microbial communities and predicted functions. In general, the microbial sensitivity to PTEs was bacteria > archaea. Geo-accumulation index and potential ecological risk (PER) index suggested Hg and Cd were the significant contaminates and posed the most serious ecological risk in sediments. Structural Equation Model identified the bioindicators 1/nitrate reduction and rara taxa (Azoarcus) as reflect and speculate Hg and Cd pollution, respectively. PER was predicted by 1/nitrate reduction and rare taxa (Phaeodactylibacter and Illumatobacter). Results elucidated the rather role of rare taxa in indicating PTEs pollution. The findings contributed to provide useful reference for bioremediation of contaminated sediments under PTEs stress.
Collapse
Affiliation(s)
- Mingzhu Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province, China; School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China.
| | - Piaoxue Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China
| | - Xuhao Wei
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China
| | - Bian Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China
| |
Collapse
|
5
|
Albert S, Hedberg P, Motwani NH, Sjöling S, Winder M, Nascimento FJA. Phytoplankton settling quality has a subtle but significant effect on sediment microeukaryotic and bacterial communities. Sci Rep 2021; 11:24033. [PMID: 34911983 PMCID: PMC8674317 DOI: 10.1038/s41598-021-03303-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
In coastal aphotic sediments, organic matter (OM) input from phytoplankton is the primary food resource for benthic organisms. Current observations from temperate ecosystems like the Baltic Sea report a decline in spring bloom diatoms, while summer cyanobacteria blooms are becoming more frequent and intense. These climate-driven changes in phytoplankton communities may in turn have important consequences for benthic biodiversity and ecosystem functions, but such questions are not yet sufficiently explored experimentally. Here, in a 4-week experiment, we investigated the response of microeukaryotic and bacterial communities to different types of OM inputs comprising five ratios of two common phytoplankton species in the Baltic Sea, the diatom Skeletonema marinoi and filamentous cyanobacterium Nodularia spumigena. Metabarcoding analyses on 16S and 18S ribosomal RNA (rRNA) at the experiment termination revealed subtle but significant changes in diversity and community composition of microeukaryotes in response to settling OM quality. Sediment bacteria were less affected, although we observed a clear effect on denitrification gene expression (nirS and nosZ), which was positively correlated with increasing proportions of cyanobacteria. Altogether, these results suggest that future changes in OM input to the seafloor may have important effects on both the composition and function of microbenthic communities.
Collapse
Affiliation(s)
- Séréna Albert
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius 20A, 106 91, Stockholm, Sweden.
| | - Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius 20A, 106 91, Stockholm, Sweden
| | - Nisha H Motwani
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Sara Sjöling
- Department of Environmental Science, School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius 20A, 106 91, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius 20A, 106 91, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|