1
|
Cazenave J, Rossi AS, Ale A, Montalto L, Gutierrez MF, Rojas Molina F. Does temperature influence on biomarker responses to copper exposure? The invasive bivalve Limnoperna fortunei (Dunker 1857) as a model. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110059. [PMID: 39437870 DOI: 10.1016/j.cbpc.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Biomarkers are useful tools for assessing the early warning effects of pollutants. However, their responses can be influenced by confounding factors. In this study, we investigated the influence of temperature on multiple biomarkers in the invasive freshwater bivalve Limnoperna fortunei exposed to copper (Cu). The mussels were exposed to low and high environmental Cu concentrations at two temperatures (15 °C and 25 °C). After 96 h, the oxidative stress, neurotoxicity, and metabolic parameters were assessed. Our results showed that temperature is a key factor influencing biomarker responses in mussels, with higher glutathione S-transferase activity and lower energy reserves at cold temperature. In addition, the effects of Cu were greater at the highest concentration at 15 °C (increased lipid peroxidation and cholinesterase activity). Overall, these findings suggest that cold stress increases the susceptibility of L. fortunei to metal effects and highlight the importance of including temperature in toxicity testing and biomonitoring. In addition, using the invasive bivalve L. fortunei as a model could prove valuable in its role as a sentinel species for other organisms.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Luciana Montalto
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - María F Gutierrez
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Florencia Rojas Molina
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (FHUC-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| |
Collapse
|
2
|
Nunes SM, Josende ME, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Polystyrene microplastic alters the redox state and arsenic metabolization in the freshwater bivalve Limnoperna fortunei. Toxicol Res (Camb) 2023; 12:824-832. [PMID: 37915497 PMCID: PMC10615819 DOI: 10.1093/toxres/tfad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 11/03/2023] Open
Abstract
Most organisms possess the capacity to metabolize arsenic (As) accumulating compounds to less toxic forms, thus minimizing the adverse effect induced by this metalloid. However, other contaminants may to interfere with As metabolism, contributing to the accumulation of more toxic compounds. Microplastics (MPs) are omnipresent in aquatic environment and may induce toxicological effects (alone or in combination with other contaminants) on living organisms. Therefore, the objective of the present study was to evaluate the effect of the exposure of the freshwater clam Limnoperna fortunei to a combination of MP (4 and 40 μg/L of polystyrene microbeads, 1.05 μm) and As (50 μg/L) for 48 h, evaluating the accumulation and metabolization of As and oxidative stress parameters, such as catalase (CAT), glutathione-S-transferase activities, total antioxidant competence, reduced glutathione (GSH), and lipid damage in the gills and digestive glands. Results revealed that low MP concentration disrupts the redox state of the digestive gland by a decrease in the antioxidant activity (CAT and total antioxidant capacity). GSH levels in the gills of animals exposed to MP (4 μg/L) alone and the combination of MP + As increased, concomitant with an increase in the percentage of toxic compounds, indicating the effect of MP on As metabolism. Although, few studies evaluated the effect of coexposure to MP + As by considering metabolization of metalloid in freshwater bivalve, our results revealed that exposure to MP reduced the metabolization capacity of As, favoring the accumulation of more toxic compounds besides the MP alone, which showed a pro-oxidant effect in L. fortunei.
Collapse
Affiliation(s)
- Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianchi, Ancona 60100, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Avenida Itália, km 8, s/nº, Rio Grande 96203900, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB-FURG, Rio Grande, Brazil
| |
Collapse
|
3
|
Burlakova LE, Karatayev AY, Boltovskoy D, Correa NM. Ecosystem services provided by the exotic bivalves Dreissena polymorpha, D. rostriformis bugensis, and Limnoperna fortunei. HYDROBIOLOGIA 2022; 850:2811-2854. [PMID: 35990416 PMCID: PMC9376586 DOI: 10.1007/s10750-022-04935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 06/02/2023]
Abstract
The ecosystem services approach to conservation is becoming central to environmental policy decision making. While many negative biological invasion-driven impacts on ecosystem structure and functioning have been identified, much less was done to evaluate their ecosystem services. In this paper, we focus on the often-overlooked ecosystem services provided by three notable exotic ecosystem engineering bivalves, the zebra mussel, the quagga mussel, and the golden mussel. One of the most significant benefits of invasive bivalves is water filtration, which results in water purification and changes rates of nutrient cycling, thus mitigating the effects of eutrophication. Mussels are widely used as sentinel organisms for the assessment and biomonitoring of contaminants and pathogens and are consumed by many fishes and birds. Benefits of invasive bivalves are particularly relevant in human-modified ecosystems. We summarize the multiple ecosystem services provided by invasive bivalves and recommend including the economically quantifiable services in the assessments of their economic impacts. We also highlight important ecosystem disservices by exotic bivalves, identify data limitations, and future research directions. This assessment should not be interpreted as a rejection of the fact that invasive mussels have negative impacts, but as an attempt to provide additional information for scientists, managers, and policymakers.
Collapse
Affiliation(s)
| | | | - Demetrio Boltovskoy
- IEGEBA, Instituto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales - Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy M. Correa
- Servicio de Hidrografía Naval and Escuela de Ciencias del Mar, Facultad de la Armada, Sede Educativa Universitaria, UNDEF, Buenos Aires, Argentina
| |
Collapse
|