1
|
Liu T, Nie H, Huo Z, Yan X. Genome-wide identification of aquaporin and their potential role in osmotic pressure regulation in Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101436. [PMID: 39929021 DOI: 10.1016/j.cbd.2025.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Aquaporins (AQPs) are specialized membrane proteins that create selective water channels, facilitating the transport of water across cell membranes and playing a vital role in maintaining water balance and regulating osmotic pressure in aquatic animals. This study identified 9 aquaporin genes from the genome of R. philippinarum, and a comprehensive analysis was conducted on their gene structure, phylogenetic relationships, protein structure, and chromosome localization. RNA-seq data analysis revealed that aquaporin genes were differentially expressed at different developmental stages, in tissue distribution, and in response to salinity stress. In addition, qPCR results revealed that the expression levels of aquaporin genes (AQP1, AQP4d, and AQP3) were significantly elevated in response to both acute low and high salinity stress, suggesting their important role in osmotic pressure regulation in R. philippinarum. This study's results offer an important reference for further investigations into the regulation of osmotic pressure and salinity adaptation of aquaporin in R. philippinarum.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
2
|
Sun C, Zhu M, Wang L, Wen H, Qi X, Li C, Zhang X, Sun D, Li Y. Comprehensive genome-wide identification and functional characterization of mapk gene family in northern snakeheads (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110076. [PMID: 39645216 DOI: 10.1016/j.fsi.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade, integral to cellular regulation, orchestrates cell growth, differentiation, stress response, and inflammatory reactions to adapt to challenging environments. The northern snakeheads (Channa argus), a valuable freshwater species known for its hypoxia tolerance, rapid growth, and high nutritional value, lacks comprehensive research on its mapk gene family. In this study, we identified 16 mapk genes in northern snakeheads, among which mapk8, mapk12 and mapk14 have duplicate copies. Phylogenetic analysis confirmed the evolutionary conservation of this gene family. Structural and motif analyses further underscored the conserved nature of these genes. Expression pattern analysis under abiotic and biotic stress conditions showed significant differences expression of mapks in the gills and suprabranchial organ (SBO) after air exposure, as well as in the brain following cold stress, highlighting the extensive role of mapks in stress regulation. It was worth noting that the significant expression differences of mapks were also observed in the spleen after N. seriolae infection, implicating that these genes may be involved in the regulation of innate immune responses. Additionally, analysis of protein-protein interaction (PPI) networks suggested that the co-activation of multiple MAPK signaling pathways may play a key role in regulating an organism's response to biotic and abiotic stresses. This study provides a detailed description of the mapk gene family in the northern snakeheads and elucidates its biological functions under various stress conditions, offering valuable insights into the regulatory mechanisms of the mapk gene family.
Collapse
Affiliation(s)
- Chaonan Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Trang NM, Vinh LB, Phong NV, Yang SY. Anti-Inflammatory Activity of Labdane and Norlabdane Diterpenoids from Leonurus sibiricus Related to Modulation of MAPKs Signaling Pathway. PLANTA MEDICA 2025; 91:29-39. [PMID: 39395406 DOI: 10.1055/a-2440-5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Leonurus sibiricus, a widely cultivated herbaceous plant in Asian countries, exhibits diverse medicinal applications. Recent studies emphasize its pharmacological properties and efficacy in promoting bone health. In addition to the known compounds and their pharmacological activities, in this study, we isolated and elucidated two new labdane-type diterpenoids, (3R,5R,6S,10S)-3,6-dihydroxy-15-ethoxy-7-oxolabden-8(9),13(14)-dien-15,16-olide (1: ) and (4R,5R,10S)-18-hydroxy-14,15-bisnorlabda-8-en-7,13-dione (2: ), a new natural phenolic compound, and a known compound from L. sibiricus using advanced spectroscopic techniques, including circular dichroism spectroscopy, high-resolution mass spectrometry, and 1- and 2-dimensional NMR. Among these, compound 1: demonstrated potent inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression levels, followed by compound 2: . Whereas compounds 3: and 4: did not exhibit effectiveness in RAW264.7 macrophages. Moreover, compound 1: suppressed pro-inflammatory markers induced by lipopolysaccharide (LPS) stimulation. Compound 1: also suppressed iNOS and cyclooxygenase-2 (COX-2) protein levels and downregulated pro-inflammatory cytokines. Additionally, compound 1: showed inhibition of the phosphorylation of p38, JNK, and ERK, key mediators of the MAPK signaling pathway. These findings indicate that a natural-derived product, compound 1,: might be a potential candidate as an anti-inflammation mediator.
Collapse
Affiliation(s)
- Nguyen Minh Trang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Zhang W, Qian Z, Ji J, Wang T, Yin S, Zhang K. Characterization of HSP70 and HSP90 Gene Family in Takifugu fasciatus and Their Expression Profiles on Biotic and Abiotic Stresses Response. Genes (Basel) 2024; 15:1445. [PMID: 39596645 PMCID: PMC11593546 DOI: 10.3390/genes15111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) play crucial roles in response to temperature changes and biotic stresses. However, the HSP gene family in the pufferfish (Takifugu fasciatus) herring has not been comprehensively investigated. METHODS AND RESULTS This study presents a systematic analysis of the HSP70 and HSP90 gene families in T. fasciatus, focusing on gene characterization, conserved structural domains, molecular evolutionary history, and expression patterns of the HSP gene family under stress conditions. The findings reveal that 16 HSP genes are evolutionarily conserved, while hspa4 and hsp90aa appear specific to teleost fish. HSP genes exhibit widespread expression across 11 examined tissues, with most demonstrating high expression levels in the heart, brain, and liver. Furthermore, T. fasciatus was subjected to cryogenic and biotic stresses, revealing distinct expression patterns of HSPs under various stress conditions. The response of HSPs to cold stress and Aeromonas hydrophila infection was sustained. In contrast, gene expression of HSPs significantly changed only in the pre-infection period following Ichthyophthirius multifiliis infection, gradually returning to normal levels in the later stages. CONCLUSIONS These experimental results provide a foundation for further in-depth investigations into the characteristics and functions of HSPs in T. fasciatus.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ziang Qian
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
| | - Jie Ji
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
- Co-Innovation Center for Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Tao Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
- Co-Innovation Center for Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
- Co-Innovation Center for Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Kai Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; (W.Z.); (Z.Q.); (J.J.); (T.W.); (S.Y.)
- Co-Innovation Center for Marine Bio-Industry Technology, Lianyungang 222005, China
| |
Collapse
|
5
|
Li L, Chang J, Xu Z, Chu L, Zhang J, Xing Q, Bao Z. Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106750. [PMID: 39293275 DOI: 10.1016/j.marenvres.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
Collapse
Affiliation(s)
- Linshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaosong Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
6
|
Zeng Y, Jiang R, Deng J, Cheng D, Wang W, Ye J, He C, Zhang C, Zhang H, Zheng H. Characterization of MKK family genes and their responses to temperature stress and Vibrio parahaemolyticus infection in noble scallop Chlamys nobilis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106695. [PMID: 39205359 DOI: 10.1016/j.marenvres.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mitogen-activated protein kinase kinase (MKK), the key element of the Mitogen-activated protein kinase (MAPK) signaling pathway, is crucial for the immune response to adverse environments in aquatic animals. Nevertheless, there is limited information regarding the role of the MKK gene family in mollusks. In our study, genome data and transcriptome were used to identify four MKK genes (CnMKK4, CnMKK5, CnMKK6, and CnMKK7) in the noble scallop. The result of the gene structure, motif analysis, and phylogenetic tree revealed that MKK genes are relatively conserved in bivalves. Moreover, four CnMKK genes were significantly highly expressed in immune-related tissues, suggesting that CnMKKs may related to bivalve immunity. Furthermore, CnMKK6 and CgMKK4 were significantly differentially expressed (P < 0.05) under 24 h of temperature stress, and all CnMKKs were significantly differentially expressed (P < 0.05) under 24 h of Vibrio parahaemolyticus infection. These results showed that the CnMKKs may have a significant impact under biotic and abiotic stresses. In conclusion, the result of the CnMKKs provides valuable insights into comprehending the function of MKK genes in mollusks.
Collapse
Affiliation(s)
- Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Ruolin Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Beihai, 536009, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| |
Collapse
|
7
|
Andrade A, Escalante M, Ramírez F, Vigliocco A, Alemano S. Phytohormones and related genes function as physiological and molecular switches regulating water stress response in the sunflower. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1277-1295. [PMID: 39184555 PMCID: PMC11341520 DOI: 10.1007/s12298-024-01497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Water deficit stress reduces crop yield in field crops, including sunflowers, at any growth stage. In response, most plants activate hormonal and gene expression patterns to mitigate damage. In this study, we evaluated changes in the physiological and gene transcription levels of two sunflower (Helianthus annuus L.) inbred lines -one sensitive (B59 line) and one water stress-tolerant (B71)-in response to water stress, by using mannitol to simulate water deficit conditions, which provides moderate stress in both sunflower lines. The analyses of the accumulation of various phytohormones under this stress revealed that Jasmonic acid (JA) significantly increased in the shoots of both lines. Similarly, Salicylic acid (SA) increased in the shoots of both lines, although it also accumulated in B71 roots. In addition, Abscisic acid (ABA) and Indole-3-acetic acid (IAA) showed a considerable increase in the B59 shoots. Regarding the JA and SA pathways, the WRKY70 transcription levels were higher in the shoots of both lines and the roots of B71. The B59 line showed overtranscription of a gene related to the ABA pathway (XERICO) and genes associated with IAA (ARF9 and ARF16 genes). The B71 line, on the other hand, simultaneously triggered the JA, SA and ABA hormonal pathways in response to this stress condition. The ABA and JA hormonal pathways activated different TFs, such as RD20, RD22, RD26, ANAC19 and ANAC29, through MYC2. Both the JA and SA hormonal pathways activated the WRKY70 transcription factor. Altogether, each line triggered the hormonal and transcriptional pathways in response to water stress, although at varying intensities. The results suggest that the hormonal pathways of JA, SA, IAA and ABA, along with their primary associated genes, are activated in response to water deficit at the early growth stage in sunflower seedlings, which mitigates damage. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01497-8.
Collapse
Affiliation(s)
- Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800 Río Cuarto, Argentina
| | - Maximiliano Escalante
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas, y Naturales, Universidad Nacional de Rio Cuarto (UNRC), 5800 Río Cuarto, Argentina
| | - Federico Ramírez
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas, y Naturales, Universidad Nacional de Rio Cuarto (UNRC), 5800 Río Cuarto, Argentina
| | - Ana Vigliocco
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800 Río Cuarto, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800 Río Cuarto, Argentina
| |
Collapse
|
8
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
9
|
Yang Y, Ma Q, Jin S, Huang B, Wang Z, Chen G. Identification of mapk genes, and their expression profiles in response to low salinity stress, in cobia (Rachycentron canadum). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110950. [PMID: 38307403 DOI: 10.1016/j.cbpb.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Mitogen-activated protein kinases (MAPKs) are a class of protein kinases that regulate various physiological processes, and play a crucial role in maintaining the osmotic equilibrium of fish. The objective of this study was to identify and characterize the mapk family genes in cobia (Rachycentron canadum) and examine their expression profiles under different low salinity stress regimes (acute: from 30‰ to 10‰ in 1 h, sub-chronic: from 30‰ to 10‰ over 4 d). A total of 12 cobia mapk genes (Rcmapks) were identified and cloned, including six erk subfamily genes (Rcmapk1/3/4/6/7/15), three jnk subfamily genes (Rcmapk8/9/10) and three p38 mapk subfamily genes (Rcmapk 11/13/14). Domain analysis indicated that the RcMAPKs possessed the typical domains including S_TKc and PKc_like domain. Phylogenetic analysis revealed that the Rcmapks were most closely related to those of the turbot (Scophthalmus maximus). The tissue distribution of mapk genes in adult cobia and the expression patterns of Rcmapks under different low salinity stress regimes were investigated using quantitative real-time PCR (qRT-PCR). The results revealed that Rcmapk3/9/10/11/13/14 exhibited a relatively broad expression distribution across 14 different tissues. For all these genes the highest expression level was in the brain, except for Rcmapk14 (highly expressed in the stomach, gill, and skin). The genes Rcmapk1/6/15 showed significantly higher expression in the testis. Under acute low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 was significantly altered in the gill, intestine, and trunk kidney, however, the aforementioned genes exhibited very different expression patterns among the three tissues. In the gill, most of the genes from the erk (Rcmapk3/6/7) and p38 mapk subfamily (Rcmapk11/13/14) were significantly up-regulated at almost all the time points (P < 0.05); Similarly, the expression of Rcmapk3/9/11/13/14 genes were significantly increased in the trunk kidney; while in the intestine, most of the altered genes (Rcmapk6/7/9/11/13/14) were significantly down-regulated at 1 h. Following the sub-chronic low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 genes were significantly altered in all three tissues. These findings provide important reference data for elucidating the roles of cobia mapk family genes in response to low salinity stress.
Collapse
Affiliation(s)
- Yunsheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shulei Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baosong Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Xie Q, Yao T, Sun X, Liu X, Wang X. Whole genome identification of olive flounder (Paralichthys olivaceus) cathepsin genes: Provides insights into its regulation on biotic and abiotic stresses response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106783. [PMID: 38064891 DOI: 10.1016/j.aquatox.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.
Collapse
Affiliation(s)
- Qingping Xie
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xuanyang Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
11
|
Bai J, Deng S, Fu H, Yang Q, Ren F, Zeng S, Chen Z, Yang Y, Wu Z. Chlorpyrifos induces placental oxidative stress and barrier dysfunction by inducing mitochondrial apoptosis through the ERK/MAPK signaling pathway: In vitro and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166449. [PMID: 37634732 DOI: 10.1016/j.scitotenv.2023.166449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide that is widely used in agricultural production and residential environments worldwide. In this study, we determined the harmful effects and toxicological mechanism of CPF in porcine trophectoderm (pTr) cells and the placenta of female mice during pregnancy. The findings revealed that CPF significantly decreased cell viability and increased intracellular lactate dehydrogenase (LDH) release in pTr cells. Similarly, CPF induced reproductive toxicity in pregnant maternal mice, including decreased maternal, fetal, and placental weights. Moreover, following CPF treatment, pTr cells and the placenta of female mice showed significant apoptosis. JC-1 staining and flow cytometry analysis also revealed that the mitochondrial membrane potential (MMP) of pTr cells treated with CPF was significantly depolarized. Additionally, CPF can induce an increase in reactive oxygen species (ROS) and barrier dysfunction in pTr cells and the placenta of female mice. We further verified that CPF-induced mitochondrial apoptosis is mediated by the MAPK signaling pathway, as shown by using of small molecular inhibitors of related proteins. Also, CPF-induced oxidative stress, barrier dysfunction, and mitochondrial apoptosis in pTr cells were alleviated by U0126, an inhibitor of the ERK/MAPK signaling pathway. These findings suggested that exposure to CPF in early pregnancy might be a potential risk fator affecting placental formation and function in humans and animals.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
12
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
13
|
Xie H, Hu J, Wang Y, Wang X. Identification of the matrix metalloproteinase (MMP) gene family in Japanese flounder (Paralichthys olivaceus): Involved in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023:108878. [PMID: 37271328 DOI: 10.1016/j.fsi.2023.108878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
The Matrix metalloproteinase (MMP) gene family is responsible for regulating the degradation of Extra Cellular Matrix (ECM) proteins, which are important for physiological processes such as wound healing, tissue remodeling, and stress response. Although MMPs have been studied in many species, their role in immune response in Japanese flounder (Paralichthys olivaceus) is still not fully understood. This study conducted a comprehensive analysis of MMPs in flounder, including gene structures, evolutionary relationships, conserved domains, molecular evolution, and expression patterns. Analysis revealed that MMP genes could be grouped into 17 subfamilies and were evolutionarily conserved and functionally-constrained. Meanwhile, MMP genes were found to express in different embryonic and larval stages and might play the role of sentinel in healthy tissues. Furthermore, expression profiling showed that MMPs had diverse functions in environmental stress, with 60% (9/15) and 73% (11/15) of MMPs showing differential expression patterns under temperature stress and Edwardsiella tarda (E. tarda) infection, respectively. These findings provide a useful resource for understanding the immune functions of MMP genes in Japanese flounder.
Collapse
Affiliation(s)
- Huihui Xie
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China
| | - Jiabao Hu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
| | - Yajun Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| | - Xubo Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
14
|
Yao T, Wang R, Han P, Liu X, Wang X. Identification of olive flounder (Paralichthys olivaceus) toll-like receptor genes: Involvement in immune response to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108841. [PMID: 37209756 DOI: 10.1016/j.fsi.2023.108841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Toll-like receptor (TLR) genes are best known for their roles in the innate immune defense. However, studies focusing on the reaction mechanisms of TLR genes in olive flounder (Paralichthys olivaceus) immune responses are still limited. In this study, 11 TLR family members (PoTLRs) were identified and classified from P. olivaceus genome. Phylogenetic analysis showed that PoTLRs were highly conserved in olive flounder. The analysis of motif prediction and gene structure indicated that TLRs had high sequence similarity. The expression patterns in developmental stages and different tissues showed that TLR members were spatially and temporally specific. RNA-Seq analysis of temperature stress and Edwardsiella tarda infection suggested that TLR members were involved in inflammatory responses, PoTLR5b and PoTLR22 showed significant differences in response to both temperature stress and E. tarda stress, indicating their potential immune functions. The results of this study suggested that TLR genes played important roles in the innate immune response of olive flounder, and would provide a solid basis for further study of their functions.
Collapse
Affiliation(s)
- Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| |
Collapse
|
15
|
Chen J, Han P, Liu X, Wang X. Characterization of Japanese flounder (Paralichthys olivaceus) STAT members: An immune-related gene family involved in Edwardsiella tarda and temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108818. [PMID: 37201733 DOI: 10.1016/j.fsi.2023.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The signal transducer and activator of transcription (STAT) family members are not only the transcriptional activators, but also play important roles in regulating inflammatory response. Some members have been reported to be involved in innate bacterial and antiviral immunity in aquatic organisms. However, no systematic research on STATs has been found in teleost. In this present study, we characterized six STAT genes in Japanese flounder based on bioinformatics methods, namely PoSTAT1, PoSTAT2, PoSTAT3, PoSTAT4, PoSTAT5 and PoSTAT6. The phylogenetic analysis of STATs in fish indicated that STATs were highly conserved and revealed an absence of STAT5 in a few species. Further analysis of gene structures and motifs showed STAT proteins shared a similar structure and probably had similar functionality in Japanese flounder. The expression profiles of different development stages and tissues demonstrated that PoSTATs exhibited specificity in temporality and spatiality as well as PoSTAT4 was highly expressed in gill. The transcriptome data analysis of E. tarda and temperature stress showed that PoSTAT1 and PoSTAT2 were more respective to these two kinds of stress. In addition, the results also demonstrated that these PoSTATs might regulate immune response in different ways, manifested by up-regulation in E. tarda infection and down-regulation in temperature stress. In a word, this systematic analysis of PoSTATs would provide valuable information about the phylogenetic relationship of STATs in fish species and help understand the role of STAT genes in the immune response of Japanese flounder.
Collapse
Affiliation(s)
- Jianming Chen
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
16
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
17
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
18
|
Han P, Wang R, Yao T, Liu X, Wang X. Genome-wide identification of olive flounder (Paralichthys olivaceus) SOCS genes: Involvement in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108515. [PMID: 36603791 DOI: 10.1016/j.fsi.2023.108515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The suppressors of cytokine signaling (SOCS) gene family participates in development and immunity through negative regulation of cytokine signaling pathways. Although the immune response of SOCS gene family members has been extensively characterized in teleost, no similar study has been reported in olive flounder yet. In our present study, a total of 13 SOCSs in olive flounder were identified and characterized systematically. By querying the SOCS sequences of ten teleost fish species, we found there were exactly more members of SOCSs in fish than mammals, which indicated that there were more duplication events occurred in fish than in higher vertebrates. Phylogenetic analysis clearly illuminated that SOCS genes were highly conserved. The analysis of gene structure and motif showed SOCS proteins of olive flounder shared a high level of sequence similarity strikingly. The expression profiles of tissues and developmental stages indicated that SOCS members had a kind of specificity in temporality and spatiality. RNA-Seq analysis of temperature stress and E. Tarda infection demonstrated SOCS members were involved in inflammatory response. In a word, our results would provide a further reference for understanding the mechanism of SOCS genes in olive flounder.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
19
|
Xu XW, Zheng W, Yang Y, Hou J, Chen S. High-quality Japanese flounder genome aids in identifying stress-related genes using gene coexpression network. Sci Data 2022; 9:705. [PMID: 36385241 PMCID: PMC9668919 DOI: 10.1038/s41597-022-01821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The Japanese flounder is one of the most economically important marine flatfish. However, due to the increased frequency of extreme weather events and high-density industrial farming, an increasing number of environmental stresses have become severe threats to the healthy development of the Japanese flounder culture industry. Herein, we produced a high-quality chromosome-scale Japanese flounder genome using PacBio Circular Consensus Sequencing technologies. The assembled Japanese flounder genome spanned 588.22 Mb with a contig N50 size of 24.35 Mb. In total, 105.89 Mb of repetitive sequences and 22,565 protein-coding genes were identified by genome annotation. In addition, 67 candidate genes responding to distinct stresses were identified by gene coexpression network analysis based on 16 published stress-related RNA-seq datasets encompassing 198 samples. A high-quality chromosome-scale Japanese flounder genome and candidate stress-related gene set will not only serve as key resources for genomics studies and further research on the underlying stress responsive molecular mechanisms in Japanese flounder but will also advance the progress of genetic improvement and comprehensive stress-resistant molecular breeding of Japanese flounder. Measurement(s) | genome assembly | Technology Type(s) | PacBio RS II |
Collapse
|
20
|
Han P, Qiao Y, He J, Men Y, Liu Y, Liu X, Wang X. Identification and functional analysis of dual-specificity phosphatases (DUSP) genes in Japanese flounder (Paralichthys olivaceus) against temperature and Edwardsiella tarda stress. FISH & SHELLFISH IMMUNOLOGY 2022; 130:453-461. [PMID: 36162775 DOI: 10.1016/j.fsi.2022.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dual-specificity Phosphatases (DUSPs) are not only the key regulators of dephosphorylating and inactivating mitogen-activated protein kinases (MAPKs), but play a crucial role in the immune response. However, the role of DUSP genes in Japanese flounder (PoDUSPs) is still unclear. In this study, 28 DUSP genes in Japanese flounder were identified and classified based on the whole genome database. Phylogenetic analysis and protein structure analysis revealed that DUSPs had highly conserved domains in teleosts. Molecular evolution analysis indicated that the PoDUSP genes were conservative during evolution and were functional-constrained. Meanwhile, PoDUSP genes were found to express in different embryonic and larval stages which might play the role of sentinel in healthy organisms. Furthermore, PoDUSP genes' expression profiles after temperature stress and Edwardsiella tarda (E. tarda) infection were determined in Japanese flounder without precedent, and the results demonstrated that Podusp1, Podusp2 and Podusp16 were more respective to temperature variation whereas Podusp1 and Podusp6 were more respective to E. tarda infection. In summary, our results provide useful resources for understanding the immune responsibilities of DUSP genes in flatfish.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yu Men
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
21
|
Wang Y, Zhu J, Chen J, Xu R, Groth T, Wan H, Zhou G. The Signaling Pathways Induced by Exosomes in Promoting Diabetic Wound Healing: A Mini-Review. Curr Issues Mol Biol 2022; 44:4960-4976. [PMID: 36286052 PMCID: PMC9600352 DOI: 10.3390/cimb44100337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-β/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jiayan Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| | - Guoying Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| |
Collapse
|
22
|
Yan W, Qiao Y, He J, Qu J, Liu Y, Zhang Q, Wang X. Molecular Mechanism Based on Histopathology, Antioxidant System and Transcriptomic Profiles in Heat Stress Response in the Gills of Japanese Flounder. Int J Mol Sci 2022; 23:ijms23063286. [PMID: 35328705 PMCID: PMC8955770 DOI: 10.3390/ijms23063286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an economically important flatfish in Asia, Japanese flounder is threatened by continuously rising temperatures due to global warming. To understand the molecular responses of this species to temperature stress, adult Japanese flounder individuals were treated with two kinds of heat stress—a gradual temperature rise (GTR) and an abrupt temperature rise (ATR)—in aquaria under experimental conditions. Changes in histopathology, programmed cell death levels and the oxidative stress status of gills were investigated. Histopathology showed that the damage caused by ATR stress was more serious. TUNEL signals confirmed this result, showing more programmed cell death in the ATR group. In addition, reactive oxygen species (ROS) levels and the 8-O-hDG contents of both the GTR and ATR groups increased significantly, and the total superoxide dismutase (T-SOD) activities and total antioxidant capacity (T-AOC) levels decreased in the two stressed groups, which showed damage to antioxidant systems. Meanwhile, RNA-seq was utilized to illustrate the molecular mechanisms underyling gill damage. Compared to the control group of 18 °C, 507 differentially expressed genes (DEGs) were screened in the GTR group; 341 were up-regulated and 166 were down-regulated, and pathway enrichment analysis indicated that they were involved in regulation and adaptation, including chaperone and folding catalyst pathways, the mitogen-activated protein kinase signaling (MAPK) pathway and DNA replication protein pathways. After ATR stress, 1070 DEGs were identified, 627 were up-regulated and 423 were down-regulated, and most DEGs were involved in chaperone and folding catalyst and DNA-related pathways, such as DNA replication proteins and nucleotide excision repair. The annotation of DEGs showed the great importance of heat shock proteins (HSPs) in protecting Japanese flounder from heat stress injury; 12 hsp genes were found after GTR, while 5 hsp genes were found after ATR. In summary, our study records gill dysfunction after heat stress, with different response patterns observed in the two experimental designs; chaperones were activated to defend heat stress after GTR, while replication was almost abandoned due to the severe damage consequent on ATR stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xubo Wang
- Correspondence: ; Tel.: +86-532-82031986; Fax: +86-532-82031802
| |
Collapse
|