1
|
Kumari P, Kumar S, Raman RP, Brahmchari RK. Nanotechnology: An avenue for combating fish parasites in aquaculture system. Vet Parasitol 2024; 332:110334. [PMID: 39514929 DOI: 10.1016/j.vetpar.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The intensification of aquaculture in recent years has led to the rise of infectious fish diseases caused by bacteria, viruses, and parasites. Parasitic diseases, in particular, are widespread and have significant economic impacts globally. Protozoan parasites like Ichthyophthirius multifiliis and Trichodina sp., myxozoans (cnidarians), monogeneans like Dactylogyrus sp. and Gyrodactylus sp., and crustacean parasites like Argulus sp. and Lernaea cyprinacea primarily cause these diseases. Despite advancements and new technologies aimed at understanding and treating these diseases, parasites remain a major health challenge in aquaculture. Traditional antiparasitic agents face limitations, including drug resistance and negative effects on non-target organisms. Recently, nanotechnology has emerged as a novel approach in aquaculture medicine, enabling the development of effective nanoparticles against pathogenic microbes. Silver nanoparticles (AgNPs) are particularly notable for their strong antimicrobial and antiparasitic properties due to their broad mechanisms of action. Although Argulus is a highly destructive crustacean parasite that financially burdens fish farmers, applying nanoparticles to manage this infection in aquaculture is still underexplored. Therefore, this review explores recent efforts to combat parasitic diseases with AgNPs and investigates their potential parasiticidal mechanisms of action, proposing them as a novel tool that could improve the management and control of argulosis diseases. The article underscores the benefits and challenges of this technology, emphasizing its significance in fostering improved health management for sustainable aquaculture.
Collapse
Affiliation(s)
- Pushpa Kumari
- Department of Aquatic Animal Health Management, College of Fisheries, Kishanganj, Bihar, India.
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ram P Raman
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Rajive K Brahmchari
- Department of Fisheries Resource Management, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Dholi, Muzaffarpur, Bihar, India
| |
Collapse
|
2
|
Queiroz LG, Faustino LA, de Oliveira PFM, Pompêo M, Córdoba de Torresi SI. Transformative nanobioplasmonic effects: Toxicological implications of plasmonic silver nanoparticles in aquatic biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176592. [PMID: 39343390 DOI: 10.1016/j.scitotenv.2024.176592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silver nanoparticles (AgNPs) present unique properties, such as the induced localized surface plasmon resonance (LSPR) provoked under illumination with a proper wavelength, allowing these nanomaterials to be applied in fields such as catalysis and biomedicine. The study of AgNPs is also highly relevant from the environmental pollution viewpoint due to their high production and application in commercial products. Consequently, AgNPs reach aquatic environments and can be plasmonically stimulated under natural light conditions. This study investigates the toxic effects promoted by AgNPs under plasmonic excitation on the survival and physiology of the crustacean Daphnia similis. Two AgNP shapes (spherical and triangular) with plasmon bands absorbing in different spectral regions in the visible range were studied. The organisms were exposed to different AgNP concentrations under five different light conditions. Survival and changes in enzymatic biomarkers of oxidative stress and lipid storage were evaluated. Under LSPR conditions, we observed increased lethality for both AgNP shapes. LSPR effects of AgNPs showed mortality 2.6 and 1.7 times higher than the treatment under dark conditions for spherical and triangular morphologies respectively. The enzymatic assays demonstrated that plasmonic treatments triggered physiological responses. Significantly decreased activities were observed exclusively under LSPR conditions for both AgNP shapes. Considering all treatments, spherical AgNPs showed lower LC50 values than triangular ones, indicating their higher toxic potential. Our results demonstrate that LSPR AgNPs can induce biological responses associated with oxidative stress and survival. Therefore, this study highlights the potential risks of environmental contamination by plasmonically active metallic nanomaterials. These materials can enhance their toxicity when light-excited, yet the results also indicate promising opportunities for light-based therapies.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil.
| | - Leandro A Faustino
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil
| | - Paulo F M de Oliveira
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil
| | - Marcelo Pompêo
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Susana I Córdoba de Torresi
- Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes Avenue 748, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Ale A, Andrade VS, Gutierrez MF, Ayech A, Monserrat JM, Desimone MF, Cazenave J. Metal-based nanomaterials in aquatic environments: What do we know so far about their ecotoxicity? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107069. [PMID: 39241467 DOI: 10.1016/j.aquatox.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.
Collapse
Affiliation(s)
- Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramon Carrillo" (FBCB-UNL), Santa Fe, Argentina
| | - Alinne Ayech
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - Martín F Desimone
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil; Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| |
Collapse
|
4
|
Wāng Y, Han Y, Xu DX. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100325. [PMID: 38046179 PMCID: PMC10692670 DOI: 10.1016/j.ese.2023.100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Silver nanoparticles (AgNPs), revered for their antimicrobial prowess, have become ubiquitous in a range of products, from biomedical equipment to food packaging. However, amidst their rising popularity, concerns loom over their possible detrimental effects on fetal development and subsequent adult life. This review delves into the developmental toxicity of AgNPs across diverse models, from aquatic species like zebrafish and catfish to mammalian rodents and in vitro embryonic stem cells. Our focus encompasses the fate of AgNPs in different contexts, elucidating associated hazardous results such as embryotoxicity and adverse pregnancy outcomes. Furthermore, we scrutinize the enduring adverse impacts on offspring, spanning impaired neurobehavior function, reproductive disorders, cardiopulmonary lesions, and hepatotoxicity. Key hallmarks of developmental harm are identified, encompassing redox imbalances, inflammatory cascades, DNA damage, and mitochondrial stress. Notably, we explore potential explanations, linking immunoregulatory dysfunction and disrupted epigenetic modifications to AgNPs-induced developmental failures. Despite substantial progress, our understanding of the developmental risks posed by AgNPs remains incomplete, underscoring the urgency of further research in this critical area.
Collapse
Affiliation(s)
- Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
5
|
Chang X, Niu S, Guo M, Shang M, Guo S, Mou X, Wu T, Tang M, Xue Y. Silver nanoparticles induced synaptic degeneration via Ca 2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells. Food Chem Toxicol 2024:114577. [PMID: 38458532 DOI: 10.1016/j.fct.2024.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.
Collapse
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Guo Z, Zuo J, Liu X, Gong J, Ma K, Feng J, Li J, Zhang S, Qiu G. Effects of titanium dioxide (TiO 2)/activated carbon (AC) nanoparticle on the growth and immunity of the giant freshwater prawn, Macrobrachium rosenbergii: potential toxicological risks to the aquatic crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33322-33333. [PMID: 36478551 DOI: 10.1007/s11356-022-24555-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to their unique physicochemical characteristics, nanomaterials exhibit many excellent properties and functions, leading to their applications in numerous fields. The large-scale production and widespread application of nanomaterials have inevitably resulted in their release into the environment, especially the water environment. Several studies have confirmed that exposure to nanomaterials can be toxic to aquatic organisms. However, few studies have focused on the effects of nanomaterial exposure on growth and immunity in crustaceans. In the present study, juvenile Macrobrachium rosenbergii were exposed to different concentrations of titanium dioxide (TiO2)/activated carbon (AC) composite nanomaterial (0.1 and 0.5 mg/L) for 45 days. The effects of nanoparticle exposure on digestion and antioxidant-related enzyme activities, as well as the expression of growth and immunity-related genes and signaling pathway, were evaluated. Our results show that in response to low concentration of TiO2/AC nanoparticle (0.1 mg/L), most of the enzyme activities related to digestion and antioxidation (TPS, LPS, AMS, SOD, and CAT) were diminished. On the contrary, the GSH-Px activity increased under the 0.1 mg/L group of TiO2/AC nanoparticle concentration. Additionally, the level of digestive and antioxidant enzyme activities we detected was increased when exposed to 0.5 mg/L TiO2/AC nanoparticle. By comparison to the expression level of growth-related genes in the control group, MSTN, CaBP, E75, Raptor, EcR, and EGF were significantly inhibited at 0.1 and 0.5 mg/L concentrations of TiO2/AC nanoparticle, whereas the expression level of genes (TLR, JAK, STAT, PPAF, ACP, and AKP) related to immunity was increased when exposed to different concentrations of TiO2/AC nanoparticle. Compared with the control group (0 mg/L concentration), 5166 DEGs were identified in the TiO2/AC nanoparticle group, and a large number of DEGs were involved in molting, energy metabolism, stress tolerance, and germ cell development. Moreover, KEGG analysis revealed that many DEGs were assigned into signaling pathways related to metabolic growth and immune stress. These results showed that exposure to TiO2/AC nanoparticle will result in the changes of enzyme activity and routine mRNA expression, suggesting that TiO2/AC nanoparticle which existed in aquatic environment might affect the physiology of M. rosenbergii. This study will provide significant information for the evaluation of nanomaterial toxicity on aquatic crustaceans.
Collapse
Affiliation(s)
- Ziqi Guo
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, People's Republic of China
| | - Xue Liu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jinhua Gong
- Dinghe Aquatic Science and Technology Development Co., LTD, 225300, Taizhou, People's Republic of China
| | - Keyi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, 201306, Shanghai, People's Republic of China.
| | - Jianbin Feng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Jiale Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, People's Republic of China
| | - Gaofeng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| |
Collapse
|