1
|
Cen Z, Lv S, Li Q, Zhang J, Mei S, Hu X, Yang A. Acute exposure to antimony elicits endocrine disturbances, leading to PCOS and ovarian fibrosis in female zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110198. [PMID: 40174734 DOI: 10.1016/j.cbpc.2025.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Antimony (Sb) is an estrogenic metal. Exogenous exposure to Sb can affect estrogen levels and their receptor expression in organisms, exerting estrogen-disrupting effects and even inducing polycystic ovary syndrome (PCOS), which is accompanied by the progression of ovarian fibrosis. To investigate the pathological mechanism of this reproductive damage caused by Sb exposure, we exposed female zebrafish to Sb solution for 18 days for acute toxicity experiments. The results showed that Sb exposure affected the changes of GnRH, FSH, LH, E2 and T levels on the HPG axis, which disrupted the balance of sex steroid hormones in the internal environment of zebrafish and progression of PCOS. Furthermore, Sirius red staining revealed significant fibrosis in the ovarian tissues of Sb-exposed female zebrafish. This study adopted transcriptome sequencing and Western Blotting to explore the mechanisms of action. The biological processes and signaling pathways potentially associated with Sb-induced ovarian fibrosis were predicted by using GO annotation and KEGG pathway enrichment analysis, such as ECM receptors, TGF-β/Smad and WNT/β-catenin. The experiment results showed that Sb induced up-regulation of the transcription levels of the pro-fibrotic factors tgf-β3, wnt10a, ctnnb1, and β-catenin protein expression, suggesting the activation of the WNT/β-catenin pathways and TGF-β/Smad. Sb exposure led to up-regulation of ECM-related genes col2a1a, itgb1b.2, lamc1, fn1a and up-regulation of fibrosis markers α-SMA, Fn1a, col4a2 protein expression, Therefore, we hypothesized that Sb exposure activates the TGF-β/Smad and WNT/β-catenin pathways, leading to abnormal ECM deposition and promoting the progression of ovarian fibrosis in zebrafish.
Collapse
Affiliation(s)
- Zhongqian Cen
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Shenghan Lv
- Guizhou Fishery Science Research Institute, Guiyang 550025, China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - ShiXue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Li G, Lv M, Zhang H, Zhang D, Yu H, Li Q, Wang L. Toxic effects of co-exposure to polystyrene nanoplastics and arsenic in zebrafish (Danio rerio): Oxidative stress, physiological and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118286. [PMID: 40378726 DOI: 10.1016/j.ecoenv.2025.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
The issue of nanoplastics (NPs) in the aquatic environment has recently received considerable attention. Arsenic (As) is a relatively abundant and toxic metalloid element in aquatic environments. However, the potential toxic effects of As on aquatic organisms under the influence of NPs remain uncertain. In this study, zebrafish were divided into five different groups: a control group, a single As(V) (10 μg/L) treatment group and three As (10 μg/L) + polystyrene nanoplastics (PS-NPs) treatment groups (NPs at concentrations of 1, 5 and 10 mg/L, respectively) for a period of seven days using a semi-static method. The findings demonstrated that the presence of PS-NPs facilitated the accumulation of As in zebrafish liver, gill and intestine with the following promoting efficiency: liver > gill > intestine. The presence of PS-NPs enhanced the oxidative stress effects of As on the aforementioned tissues. Furthermore, the activities of glutathione-S-transferase and glutathione peroxidase in the liver and intestine were found to be instrumental in mitigating oxidative stress during co-exposure. Furthermore, the presence of PS-NPs led to a further reduction in As-induced acetylcholinesterase activity in the liver and intestine of zebrafish. The combined exposure of zebrafish to PS-NPs and As resulted in an increase in lactate dehydrogenase activity in the liver, intestine and gills. This subsequently led to a reduction in the activity of acid phosphatase and alkaline phosphatase in the aforementioned tissues, thus affecting immune dysfunction in zebrafish. The integrated biomarker response indexes indicate that combined exposures result in greater toxic effects compared to single As exposures. The findings provide a fundamental basis for the assessment of the toxic effects of combined nanoscale plastic and As pollution on aquatic organisms.
Collapse
Affiliation(s)
- Guoxin Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Min Lv
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Heng Zhang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haitao Yu
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Qingsong Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Lei Wang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
3
|
Arcega RD, Chih PS, Hsu PC, Chang WH, Chen RJ, Mahmudiono T, Lee CC, Chen HL. Toxicity evaluation and prioritization of recycled plastic food contact materials using in silico tools. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137467. [PMID: 39923369 DOI: 10.1016/j.jhazmat.2025.137467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
This study assessed the toxicity of virgin and recycled plastic food contact materials (FCMs) at various recycling stages, migrated in four food simulants (water, 20 % ethanol, 4 % acetic acid, and n-heptane), using cytotoxicity and high-content screening (HCS) bioassays. Toxicity was correlated with migrating substances identified through chemical analyses, and samples were ranked by toxicity priority. Recycled polyethylene terephthalate (rPET) and 20 % ethanol exhibited the highest reduction in cell viability, whereas virgin PET (vPET) showed even lower viability. Pellets did not trigger oxidative responses in HepaRG and HK-2 cells; however, bales and flakes affected their cell morphology and mitochondrial function. rPET-flake migration in 4 % acetic acid was most toxic to HepaRG cells, while rPET-bale migration in 20 % ethanol and rPP-flake migration in water were most toxic to HK-2 cells. Nonetheless, the negative effects on cell viability and HCS parameters were mostly mitigated at the final pellet stage. In HepaRG cells exposed to 4 % acetic acid, antimony negatively correlated with cell viability and positively with cellular area, indicating its role in rPET-induced necrosis. ToxPi ranking identified vPET migration in n-heptane and water as top priorities given the nephrotoxic risks. This study emphasizes refining recycling methods and testing plastics to minimize FCM cytotoxicity.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-Chun Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
4
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
5
|
Grundmane A, Radchenko V, Ramogida CF. Chemistry of Antimony in Radiopharmaceutical Development: Unlocking the Theranostic Potential of Sb Isotopes. Chempluschem 2024; 89:e202400250. [PMID: 39048512 PMCID: PMC11639648 DOI: 10.1002/cplu.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Antimony-119 (119Sb) holds promise for radiopharmaceutical therapy (RPT), emitting short-range Auger and conversion electrons that can deliver cytotoxic radiation on a cellular level. While it has high promise theoretically, experimental validation is necessary for 119Sb in vivo applications. Current 119Sb production and separation methods face robustness and compatibility challenges in radiopharmaceutical synthesis. Limited progress in chelator development hampers targeted experiments with 119Sb. This review compiles literature on the toxicological, biodistribution and redox properties of Sb, along with existing Sb complexes, evaluating their suitability for radiopharmaceuticals. Sb(III) is suggested as the preferred oxidation state for radiopharmaceutical elaboration due to its stability in vivo and lack of skeletal uptake. While Sb complexes with both hard and soft donor atoms can be achieved, Sb thiol complexes offer enhanced stability and compatibility with the desired Sb(III) oxidation state. For 119Sb to find application in RPT, scientists need to make discoveries and advancements in the areas of isotope production, and radiometal chelation. This review aims to guide future research towards harnessing the therapeutic potential of 119Sb in RPT.
Collapse
Affiliation(s)
- Aivija Grundmane
- Department of ChemistrySimon Fraser University8888 University DriveBurnaby, BCV5A 1S6Canada
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
| | - Valery Radchenko
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouver, BCV6T 1Z1Canada
| | - Caterina F. Ramogida
- Department of ChemistrySimon Fraser University8888 University DriveBurnaby, BCV5A 1S6Canada
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
| |
Collapse
|
6
|
Xu K, Zou H, Yang A, Yao Q, Li Q, Zhang J, Hu X. Effects of antimony on antioxidant system, damage indexes of blood-brain barrier and ultrastructure of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110013. [PMID: 39173811 DOI: 10.1016/j.cbpc.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Antimony (Sb) and its compounds can be harmful to people and are known to cause cancer, so they are a key pollutant to control. This study investigated the influence of antimony on non-enzymatic antioxidants and the blood-brain barrier (BBB) in zebrafish(Danio rerio), a model organism that shares a high degree of genetic similarity with humans. Zebrafish were exposed to different doses of antimony in water for 7, 18, and 30 days. The results indicated that antimony accumulated most in the liver, followed by the gills, flesh, and brain, with the accumulation increasing as the exposure duration extends. Additionally, under identical antimony concentrations, the buildup in the four tissues was positively correlated with the duration of exposure. After 18 days of exposure, the total antioxidant capacity (T-AOC) and endogenous non-enzymatic antioxidants vitamin C (VC) and vitamin E (VE) decreased as a result of antimony ingestion in zebrafish, although cysteine secretion was increased in the liver, gills, and brain. The structural integrity of the BBB was compromised by the elevation of ApoE4 and MMP-9 levels as a result of antimony exposure, which led to the breakdown of the basal lamina, tight junctions, and nerve fibers in the brain. At this injured region, 5-HT and MBP were also able to easily enter and leave the BBB, albeit at variable rates. Additionally, when the antimony exposure level reached 16.58 mg·L-1, antimony penetrated the BBB and bound to erythrocytes, causing their lysis.
Collapse
Affiliation(s)
- Kun Xu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Haitao Zou
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China; Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China.
| | - Qin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China
| |
Collapse
|
7
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Antimony trioxide nanoparticles promote ferroptosis in developing zebrafish (Danio rerio) by disrupting iron homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175140. [PMID: 39084369 DOI: 10.1016/j.scitotenv.2024.175140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The widespread use of antimony trioxide (ATO) and ATO nanoparticles (nATO) has led to increasing ecological and health risks. However, there is relatively insufficient research on the aquatic ecotoxicology of nATO. This study revealed that nATO affects the development of zebrafish embryos and mainly induces ferroptosis through the dissolution of Sb(III). The size of nATO ranged from 50 to 250 nm, and it generated free radicals in water. It can be ingested and accumulate in zebrafish larvae and affects normal development. Compared with those in the control group, the levels of reactive oxygen species (ROS), cell apoptosis, mitochondrial damage and iron content in the group exposed to high concentrations of nATO were increased. The transcriptomics results indicated that nATO significantly altered the expression levels of key genes related to glutathione metabolism and ferroptosis. Quantitative polymerase chain reaction consistently demonstrated the reliability of the transcriptome data and revealed that nATO induced ferroptosis by disrupting iron homeostasis and the key factor is the dissolution of Sb(III). Furthermore, ferrostatin-1, an inhibitor of ferroptosis, decreased the levels of ROS, apoptosis and mitochondrial damage induced by nATO, which further prove that nATO can promote ferroptosis. This work deepens the understanding of the ecological toxicological effects of nATO in aquatic environments and its mechanisms, which is highly important for the development of antimony management strategies.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Zhang J, Yang A, Cui W, Zhang J, Niu A, Hu X, Li Q. Tracing toxic path of antimony: From bioaccumulation to DNA hypomethylation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116351. [PMID: 38653027 DOI: 10.1016/j.ecoenv.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The increasing concentration of Antimony (Sb) in ecological environments has raised serious concerns about its potential biotoxicological impact. This study investigated the toxicokinetics, Global DNA Methylation (GDM), biomarker expression, and Integrated Biological Response (IBR) of Sb at different concentrations in zebrafish. The toxic mechanism of Sb exposure was simulated using molecular dynamics (MD). The results showed that significant differences effect existed (BCFk: liver > ovary > gut > brain) and uptake saturation phenomenon of Sb among zebrafish tissues. Over a 54-day exposure period, the liver emerged as the main target site for Sb-induced GDM, and the restoration was slower than in other tissues during the 54-day recovery period. Moreover, the concentration of Sb had a significant impact on the normally expression of biomarkers, with GSTM1 inhibited and MTF2, MT1, TET3, and p53 showing varying degrees of activation at different Sb concentrations. This could be attributed to Sb3+ potentially occupying the active site or tightly binding to the deep cavity of these genes. The IBR and MD results highlighted DNMT1 as the most sensitive biomarker among those assessed. This heightened sensitivity can be attributed to the stable binding of Sb3+ to DNMT1, resulting in alterations in the conformation of DNMT1's catalytic domain and inhibition of its activity. Consequently, this disruption leads to damage to the integrity of GDM. The study suggests that DNA methylation could serve as a valuable biomarker for assessing the ecotoxicological impact of Sb exposure. It contributes to a better understanding of the toxicity mechanisms in aquatic environments caused potential pollutants.
Collapse
Affiliation(s)
- Jingyun Zhang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Wen Cui
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jian Zhang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Apin Niu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
10
|
Liu C, Huang D, Sheng X, Zhu J, Dong S, Chen S, Wang Y, Tang A, Duan R, Yang Z, Bai J, Zheng Y. Integrated physiological, intestinal microbiota, and metabolomic responses of adult zebrafish (Danio rerio) to subacute exposure to antimony at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116326. [PMID: 38640800 DOI: 10.1016/j.ecoenv.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.
Collapse
Affiliation(s)
- Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Dongmei Huang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Xiangquan Sheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianzhong Zhu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Si Dong
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Song Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Yaying Wang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Ao Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Renyan Duan
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zeliang Yang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
11
|
Li Y, Li H, Zhang R, Bing X. Toxicity of antimony to Daphnia magna: Influence of environmental factors, development of biotic ligand approach and biochemical response at environmental relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132738. [PMID: 37832444 DOI: 10.1016/j.jhazmat.2023.132738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Acute toxicity of antimony pentavalent to neonatal Daphnia magna and the influence of water quality parameters were investigated, and enzymatic activities of organisms at environmentally relevant levels of antimony were determined. EC50 values of antimony to neonatal D. magna were 90.3 and 63.8 mg/L at 24 and 48 h of exposure, respectively. Dissolved organic matter (FA and HA) and cation (Ca2+, Mg2+ or Na+) had significant protective effects on D. magna against antimony toxicity. With increasing pH in the range from 7.4 to 8.5, increase of EC50 were observed due to the competition of OH- on biotic ligands. Based on the biotic ligand model (BLM) concept, stability constants for the binding of Sb(OH)6- and OH- to the biotic ligand were estimated, and the Log [Formula: see text] - and LogKXOH- were 3.137 and 2.859, respectively. Moreover, antimony exposure in low concentrations significantly increased MDA levels and maybe exert oxidative stress to the organisms. Antimony can also induce toxicity in D. magna by affecting oxidative stress and neurotransmitter systems. The relatively comprehensive toxicological data can contribute to the toxicity prediction and ecological risk assessments of antimony.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China.
| | - Xiaojie Bing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
12
|
Zhang JM, Han H, Li YC, Fu B, Kaneko G, Li K, Jin XC, Ji S, Yu EM, Liu LP. Comprehensive mRNA and microRNA analysis revealed the effect and response strategy of freshwater fish, grass carp (Ctenopharyngodon idella) under geosmin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115775. [PMID: 38070413 DOI: 10.1016/j.ecoenv.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 μg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.
Collapse
Affiliation(s)
- Jun-Ming Zhang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Han
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yi-Chao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Guangzhou 510380, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
| | - Gen Kaneko
- College of Natural & Applied Science, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Kang Li
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Xi-Chen Jin
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Er-Meng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Guangzhou 510380, China
| | - Li-Ping Liu
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Shi J, Ma C, Zheng Z, Zhang T, Li Z, Sun X, He Z, Zhang Z, Zhang C. Low-dose antimony exposure promotes prostate cancer proliferation by inhibiting ferroptosis via activation of the Nrf2-SLC7A11-GPX4 pathway. CHEMOSPHERE 2023; 339:139716. [PMID: 37562508 DOI: 10.1016/j.chemosphere.2023.139716] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Antimony (Sb) is a typical environmental pollutant. With the development of industrialization, antimony is widely used in daily life and enters the human body through the food chain, water source, air pollution, and other channels. The risk of antimony exposure has emerged as one of the public's major health concerns. Current research on antimony shows that antimony has certain biological toxicity, and antimony exposure may be one of the carcinogenic risk factors for bladder cancer, prostate cancer (PCa), and other cancers. But the molecular mechanism of antimony exposure in PCa is still unclear. Our results showed that serum antimony levels were significantly higher in PCa patients than in benign prostatic hyperplasia (BPH), and high levels of serum antimony were associated with poorer prognosis in PCa. We demonstrate that antimony exposure promotes PCa progression in vivo and in vitro. In addition, our results also showed that low-dose antimony exposure resulted in increased GSH, increased GPX4 expression, and decreased Fe2+. Since GPX4 and Fe2+ are important molecular features in the mechanism of ferroptosis, we further found that low-dose antimony exposure can inhibit RSL3-induced ferroptosis and promote PCa proliferation. Finally, our study demonstrates that low-dose antimony exposure promotes Nrf2 expression, increases the expression level of SLC7A11, and then increases the expression of GPX4, inhibits ferroptosis, and promotes PCa progression. Taken together, our experimental results suggest that low-dose antimony exposure promotes PCa cell proliferation by inhibiting ferroptosis through activation of the Nrf2-SLC7A11-GPX4 pathway. These findings highlight the link between low-dose antimony exposure and the Nrf2-SLC7A11-GPX4 ferroptosis pathway, providing a new potential direction for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Jianxi Shi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Chunlei Ma
- Department of Urology, Tianjin 4th Center Hospital, The 4th Center Clinical College of Tianjin Medical University, Tianjin, China.
| | - Zhiwen Zheng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Tianxiao Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhaopeng Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Xiaoyu Sun
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhen He
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
14
|
Yao Q, Yang A, Hu X, Zou H, Chen J, Li Q, Lv S, Yu X, Li C. Effects of antimony exposure on DNA damage and genome-wide variation in zebrafish (Danio rerio) liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106524. [PMID: 37031539 DOI: 10.1016/j.aquatox.2023.106524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Antimony (Sb) is a potentially toxic and carcinogenic cumulative contaminant that poses a serious threat to aquatic ecosystems. To better clarify the genotoxicity of Sb and its mechanism of action. In this study, we investigated DNA damage and genome-wide variation in the liver of a model organism, zebrafish (Danio rerio), under subacute Sb exposure and explored its potential toxicological mechanisms. The results showed that medium and high concentrations of Sb significantly reduced the total antioxidant capacity and increased the content of reactive oxygen species in zebrafish liver, and further studies revealed that it increased oxidative DNA damage and DNA-DNA cross-link (DDC), but had little effect on DNA-protein cross-link (DPC). The result of resequencing showed that the mutation sites of the genes with high concentrations of Sb were higher than those with medium concentrations, and the mutation was mainly a single nucleotide. The pathways significantly enriched for nonsynonymous single nucleotide polymorphisms (SNPs) and insertion/deletion mutations (InDels) variant genes in the coding regions of both the medium and high Sb-treated groups were ECM-receptor interactions, and the high Sb-treated group also included lysine degradation, hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This suggests that ECM-receptor interactions play an important role in the mechanism of antimony toxicity to the liver of zebrafish.
Collapse
Affiliation(s)
- Qin Yao
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jiangfeng Chen
- The College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shenghan Lv
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550025, PR China
| | - Xuegang Yu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cixing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|