1
|
Zhou GJ, Vehniäinen ER, Hiltunen M, Rigaud C, Taipale S. Effects of microplastics and natural particles on the aquatic invertebrate Daphnia magna under different dietary quality scenarios. Oecologia 2025; 207:81. [PMID: 40369333 DOI: 10.1007/s00442-025-05723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Natural and synthetic particles co-occur in the aquatic environment. However, little information is available about the effects of natural particles on freshwater animals and how these effects differ from those of synthetic particles, especially under the scenarios of decreasing dietary quality and increasing cyanobacteria in the aquatic environment. Therefore, this study evaluated apical and molecular effects of polypropylene (PP) microplastics (MPs) and three natural non-food particles (i.e., kaolin, peat, and sediment) on the freshwater invertebrate Daphnia magna fed either a green alga or a mixture of green alga and cyanobacterium. After the 21-d chronic exposure of 10 mg/L PP when using the green alga Acutodesmus sp. as diet, the size of D. magna was significantly reduced, and the molting time was significantly extended compared with the control. However, the chronic effects of PP were masked when the cyanobacterium Pseudanabaena sp. was added to their diet. The natural particles kaolin, peat, and sediment posed insignificant effects on D. magna regardless of dietary quality. The expression of molting-related genes (e.g., ecr-a) and oxidative stress-related genes (e.g., sod2) was significantly upregulated in D. magna with the exposure of both natural and synthetic particles. The predicted no-effect concentration of PP was derived as 0.025 mg/L, raising concerns relating to their toxicity and risks in the contaminated aquatic environment. This study will improve our understanding of the effects and risks of natural and synthetic particles in freshwater environments, as well as facilitate ecoenvironmental authorities to make informed decisions on the appropriate management of MPs.
Collapse
Affiliation(s)
- Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Minna Hiltunen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| |
Collapse
|
2
|
Kumar BP, Vijayakumar S, Thomas J. Effect of polystyrene nanoplastics on its toxicity and reproduction in Philodina roseola. Sci Rep 2025; 15:14206. [PMID: 40269038 PMCID: PMC12019363 DOI: 10.1038/s41598-025-98637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Micro-nano plastics have emerged as a major ecological concern. The nanoplastics (NPs) pose a huge threat to microscopic animals. Our study aims to decipher the effect of polystyrene nanoplastics (PSNPs) of 50 and 100 nm sizes on a bdelloid rotifer (Philodina roseola). Both sizes of PSNPs were analyzed using field emission Scanning electron microscopy, Fourier transform Infrared spectroscopy, and Dynamic light scattering analyses. The LC50 values for 50 and 100 nm PSNPs at 48 h upon interaction with the rotifers were 16.36 and 22.94 mg/L respectively. The total protein and superoxide dismutase levels decreased with an increase in concentration in both PSNPs upon interaction at various concentrations (4, 8, 12, and 16 mg/L). Whereas the lipid peroxidase and reactive oxygen species levels increased with an increase in concentration for both PSNPs at similar concentrations. Further, both PSNPs were found to cause internal organ damage in rotifers. A delay in the hatching rate was observed when the rotifers interacted with both PSNPs in addition to the decrease in the hatching rate of F1 generation. Therefore, PSNPs pose a threat to the natural life cycle in the rotifers.
Collapse
Affiliation(s)
- B Praveen Kumar
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Sujithra Vijayakumar
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
3
|
Byeon E, Sanpradit P, Lee JS, Jeong H, Kim MS, Hong MS, Peerakietkhajorn S, Sayed AEDH, Lee JS. Size-dependent toxicity of nano- and microplastics with zinc oxide nanoparticles in the marine rotifer Brachionus koreanus. MARINE POLLUTION BULLETIN 2024; 209:117206. [PMID: 39515278 DOI: 10.1016/j.marpolbul.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study of the combined toxic effects of zinc oxide (ZnO) and nano- and microplastics (NMPs) on the marine rotifer Brachionus koreanus demonstrates that co-exposure leads to significant physiological disruptions. The presence of NMPs increased the acute toxicity of ZnO compared to ZnO-only exposure, particularly in NP rather than MP. Combination exposure reduced both reproduction and population compared to ZnO-only exposure. We observed an increased ingestion of fluorescent MNPs in combined exposures. The ZnO + NP group showed a higher bioaccumulation of Zn compared to the ZnO and ZnO + MP groups, which resulted in increased toxicity. Also, ZnO mitigated the oxidative stress, antioxidant activity, and gene expression levels caused by NMPs. Overall, the combined exposures had more complex effects than individual exposures. ZnO altered acetylcholine esterase activity with and without NMPs, suggesting an adverse neurotoxic impact. Only the ZnO + NP group showed enhanced ERK protein level, a mitogen-activated protein kinase, suggesting a modulated cellular stress mechanism. Molecular analyses supported these in vivo findings, revealing that the combined effects of ZnO and NMPs vary by particle size, resulting in distinct toxicity pathways for NMPs. These findings highlight the need for comprehensive environmental assessments considering multiple pollutant interactions to understand their full ecological impact.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Mi-Song Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Natarajan L, Jenifer MA, Mukherjee A. Influence of algal-extracellular polymeric substances (EPS) on the pristine and combined toxicity of TiO 2 NPs and PSNPs in Artemia salina: Eco-corona enhances the toxic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116760. [PMID: 39029223 DOI: 10.1016/j.ecoenv.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.
Collapse
Affiliation(s)
| | - M Annie Jenifer
- VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
5
|
Yang Y, Zhang X, Han J, Li W, Chang X, He Y, Yee Leung KM. Nanoplastics enhanced the developmental toxicity of aromatic disinfection byproducts to a marine polychaete at non-feeding early life stage. CHEMOSPHERE 2024; 364:143062. [PMID: 39127188 DOI: 10.1016/j.chemosphere.2024.143062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Micro/nanoplastics can act as vectors for organic pollutants and enhance their toxicity, which has been attributed to the ingestion by organisms and the "Trojan horse effect". In this study, we disclosed a non-ingestion pathway for the toxicity enhancement effect of nanoplastics. Initially, the combined toxicity of polystyrene microplastics (40 μm) or nanoplastics (50 nm) with three disinfection byproducts (DBPs) to a marine polychaete, Platynereis dumerilii, was investigated. No toxic effect was observed for the micro/nanoplastics alone. The microplastics showed no effect on the toxicity of the three DBPs, whereas the nanoplastics significantly enhanced the toxicity of two aromatic DBPs when the polychaete was in its non-feeding early life stage throughout the exposure period. The microplastics showed no interaction with the P. dumerilii embryos, whereas the nanoplastics agglomerated strongly on the embryonic chorion and fully encapsulated the embryos. This could contribute to higher actual exposure concentrations in the microenvironment around the embryos, as the concentrations of the two aromatic DBPs on the nanoplastics were 1200 and 120 times higher than those in bulk solution. Our findings highlight an important and previously overlooked mechanism by which nanoplastics and organic pollutants, such as DBPs, pose a higher risk to marine species at their vulnerable early life stages. This study may contribute to a broader understanding of the environmental impacts of plastic pollution and underscore the necessity to mitigate their risks associated with DBPs.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xinyi Chang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuhe He
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Wang C, Jeong H, Lee JS, Maszczyk P, Sayed AEDH, Hwang UK, Kim HS, Lee JS, Byeon E. Physiological effects and molecular response in the marine rotifer Brachionus plicatilis after combined exposure to nanoplastics and copper. MARINE POLLUTION BULLETIN 2023; 194:115332. [PMID: 37527615 DOI: 10.1016/j.marpolbul.2023.115332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Because nanoplastics (NPs) can transport pollutants, the absorption of surrounding pollutants into NPs and their effects are important environmental issues. This study shows a combined effect of high concentrations of NPs and copper (Cu) in the marine rotifer Brachionus plicatilis. Co-exposure decreased the growth rate, reproduction, and lifespan. The highest level of NP ingestion was detected in the co-treated group, but the Cu concentration was higher in the Cu single-exposure group. ERK activation played a key role in the downstream cell signaling pathway activated by the interaction of NPs and Cu. The increased sensitivity of B. plicatilis to Cu could be due to the impairment of MXR function caused by a high concentration of NPs, which supports our in vivo experiment results. Our results show that exposure to NPs could induce the dysfunction of several critical molecular responses, weakening resistance to Cu and thereby increasing its physiological toxicity in B. plicatilis.
Collapse
Affiliation(s)
- Chuxin Wang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Un-Ki Hwang
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan 54001, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship. Int J Mol Sci 2023; 24:ijms24043723. [PMID: 36835146 PMCID: PMC9959308 DOI: 10.3390/ijms24043723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The assessment and prediction of the toxicity of engineered nanomaterials (NMs) present in mixtures is a challenging research issue. Herein, the toxicity of three advanced two-dimensional nanomaterials (TDNMs), in combination with an organic chemical (3,4-dichloroaniline, DCA) to two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa), was assessed and predicted not only from classical mixture theory but also from structure-activity relationships. The TDNMs included two layered double hydroxides (Mg-Al-LDH and Zn-Al-LDH) and a graphene nanoplatelet (GNP). The toxicity of DCA varied with the type and concentration of TDNMs, as well as the species. The combination of DCA and TDNMs exhibited additive, antagonistic, and synergistic effects. There is a linear relationship between the different levels (10, 50, and 90%) of effect concentrations and a Freundlich adsorption coefficient (KF) calculated by isotherm models and adsorption energy (Ea) obtained in molecular simulations, respectively. The prediction model incorporating both parameters KF and Ea had a higher predictive power for the combined toxicity than the classical mixture model. Our findings provide new insights for the development of strategies aimed at evaluating the ecotoxicological risk of NMs towards combined pollution situations.
Collapse
|