1
|
Zhang T, Hu Y, Lu S, Deng Y, Zhang H, Zhao Y, Yu Y, Huang H, Zhou J, Li X. Chitin Synthase Is Required for Cuticle Formation and Molting in the Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2025; 26:2358. [PMID: 40076977 PMCID: PMC11900205 DOI: 10.3390/ijms26052358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Chitin synthase is an essential enzyme of the chitin synthesis pathway during molting. In this study, we identified and characterized a chitin synthase (EsCHS) gene in the Chinese mitten crab, Eriocheir sinensis. The spatio-temporal expression and functional role of EsCHS were investigated. The open reading frame of EsCHS was 4725 bp long and encoded 1574 amino acid residues that contained the typical domain structure of the glycosyltransferase family 2. Phylogenetic analysis revealed that EsCHS belongs to the group I chitin synthase family. The expression of EsCHS was found in regenerative limbs, the cuticle and the intestines. During the molting cycle, EsCHS began to increase in the pre-molt stage and reached a significant peak in the post-molt stage. The knockdown of EsCHS resulted in the significant downregulation of chitin biosynthesis pathway genes, including TRE, HK, G6PI, PAGM and UAP. Moreover, the long-term RNAi of EsCHS resulted in thinning procuticles, abnormal molting and high mortality, suggesting that EsCHS is indispensable for the formation of chitin in the cuticle during molting. In conclusion, EsCHS is involved in the chitin biosynthesis pathway and plays an important role in molting in E. sinensis. These findings highlight the potential of incorporating EsCHS into selective breeding programs to optimize molting regulation and improve growth performance in crustacean aquaculture.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuning Hu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Siyu Lu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanfei Deng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Huimin Zhang
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yanhua Zhao
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yawen Yu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Hongbin Huang
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Jun Zhou
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| | - Xuguang Li
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (T.Z.); (Y.H.); (S.L.); (Y.D.); (H.Z.); (Y.Z.); (Y.Y.); (H.H.)
| |
Collapse
|
2
|
Zhang Z, Feng Y, Wang W, Ru S, Zhao L, Ma Y, Song X, Liu L, Wang J. Pollution level and ecological risk assessment of triazine herbicides in Laizhou Bay and derivation of seawater quality criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135270. [PMID: 39053056 DOI: 10.1016/j.jhazmat.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 μg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan 063000, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 264006, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuanqing Ma
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Xiukai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Frelon S, Recoura-Massaquant R, Dubourg N, Garnero L, Bonzom JM, Degli-Esposti D. Reproductive Capacity, but not Food Consumption, is Reduced by Continuous Exposure to Typical Genotoxic Stressor γ-Rays in the sentinel species Gammarus fossarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2071-2079. [PMID: 38980263 DOI: 10.1002/etc.5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;43:2071-2079. © 2024 SETAC.
Collapse
Affiliation(s)
- Sandrine Frelon
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Rémi Recoura-Massaquant
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| | - Nicolas Dubourg
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| | - Jean-Marc Bonzom
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Davide Degli-Esposti
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| |
Collapse
|
4
|
Wei S, Yang Y, Zong Y, Yang Y, Guo M, Zhang Z, Zhang R, Ru S, Zhang X. Long-term exposure to prometryn damages the visual system and changes color preference of female zebrafish (Danio rerio). CHEMOSPHERE 2024; 363:142835. [PMID: 38996981 DOI: 10.1016/j.chemosphere.2024.142835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Color vision, initiated from the cone photoreceptors, is essential for fish to obtain environmental information. Although the visual impairment of triazine herbicide prometryn has been reported, data on the effect of herbicide such as prometryn on natural color sensitivity of fish is scarce. Here, zebrafish were exposed to prometryn (0, 1, 10, and 100 μg/L) from 2 h post-fertilization to 160 days post-fertilization, to explore the effect and underlying mechanism of prometryn on color perception. The results indicated that 10 and 100 μg/L prometryn shortened the height of red-green cone cells, and down-regulated expression of genes involved in light transduction pathways (arr3a, pde6h) and visual cycle (lrata, rpe65a); meanwhile, 1 μg/L prometryn increased all-trans-retinoic acid levels in zebrafish eyes, and up-regulated the expression of genes involved in retinoid metabolism (rdh10b, aldh1a2, cyp26a1), finally leading to weakened red and green color perception of female zebrafish. This study first clarified how herbicide such as prometryn affected color vision of a freshwater fish after a long-term exposure from both morphological and functional disruption, and its hazard on color vision mediated-ecologically relevant tasks should not be ignored.
Collapse
Affiliation(s)
- Shuhui Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Yixin Yang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Yao Zong
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Yang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Meiping Guo
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Zhenzhong Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Rui Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China.
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, China.
| |
Collapse
|
5
|
Kong L, Pan YJ, Hwang JS. Multigenerational effects of glyphosate-based herbicide and emamectin benzoate insecticide on the reproduction and gene expression of the copepod Pseudodiaptomus annandalei (Sewell, 1919). CHEMOSPHERE 2024; 361:142423. [PMID: 38830461 DOI: 10.1016/j.chemosphere.2024.142423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 μg/L; female: 3093.46 ± 240.67 μg/L) than in the EB (male: 79.10 ± 7.30 μg/L; female: 6.38 ± 0.72 μg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 μg/L, and 0.025 μg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.
Collapse
Affiliation(s)
- Lam Kong
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Ju Pan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
6
|
Wang T, Xu D, Chang X, MacIsaac HJ, Li J, Xu J, Zhang J, Zhang H, Zhou Y, Xu R. Can a shift in dominant species of Microcystis alter growth and reproduction of waterfleas? HARMFUL ALGAE 2024; 136:102657. [PMID: 38876528 DOI: 10.1016/j.hal.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.
Collapse
Affiliation(s)
- Tao Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Ningbo Yonghuanyuan Environmental Engineering and Technology CO., LTD, Ningbo 315000, China
| | - Daochun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hongyan Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuan Zhou
- The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
7
|
Kim MS, Lee YH, Lee Y, Jeong H, Wang M, Wang DZ, Lee JS. Multigenerational effects of elevated temperature on host-microbiota interactions in the marine water flea Diaphanosoma celebensis exposed to micro- and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132877. [PMID: 38016313 DOI: 10.1016/j.jhazmat.2023.132877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Rising ocean temperatures are driving unprecedented changes in global marine ecosystems. Meanwhile, there is growing concern about microplastic and nanoplastic (MNP) contamination, which can endanger marine organisms. Increasing ocean warming (OW) and plastic pollution inevitably cause marine organisms to interact with MNPs, but relevant studies remain sparse. Here, we investigated the interplay between ocean warming and MNP in the marine water flea Diaphanosoma celebensis. We found that combined exposure to MNPs and OW induced reproductive failure in the F2 generation. In particular, the combined effects of OW and MNPs on the F2 generation were associated with key genes related to reproduction and stress response. Moreover, populations of predatory bacteria were significantly larger under OW and MNP conditions during F2 generations, suggesting a potential link between altered microbiota and host fitness. These results were supported by a host transcriptome and microbiota interaction analysis. This research sheds light on the complex interplay between environmental stressors, their multigenerational effects on marine organisms, and the function of the microbiome.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Huang P, Gao J, Du J, Nie Z, Li Q, Sun Y, Xu G, Cao L. Prometryn exposure disrupts the intestinal health of Eriocheir sinensis: Physiological responses and underlying mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109820. [PMID: 38145793 DOI: 10.1016/j.cbpc.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
9
|
Zhang Z, Luan Y, Ru S, Teng H, Li Y, Liu M, Wang J. A novel electrochemical aptasensor for ultrasensitive detection of herbicide prometryn based on its highly specific aptamer and Ag@Au nanoflowers. Talanta 2023; 265:124838. [PMID: 37453395 DOI: 10.1016/j.talanta.2023.124838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Herbicide prometryn has become a common pollutant in aquatic environments and caused adverse impacts on ecosystems. This study developed an ultrasensitive electrochemical aptasensor for prometryn based on its highly affinitive and specific aptamer and Ag@Au nanoflowers (Ag@AuNFs) for signal amplification. Firstly, this study improved the Capture-SELEX strategy to screen aptamers and obtained aptamer P60-1, which had a high affinity (Kd: 23 nM) and could distinguish prometryn from its structural analogues. Moreover, the typical stem-loop structure in aptamer P60-1 was found to be the binding pocket for prometryn. Subsequently, an electrochemical aptasensor for prometryn was established using multiwalled carbon nanotubes and reduced graphene oxide as electrode substrate, Ag@Au NFs as signal amplification element, and aptamer P60-1 as recognition element. The aptasensor had a detection range of 0.16-500 ng/mL and a detection limit of 60 pg/mL, which was much lower than those of existing detection methods. The aptasensor had high stability and good repeatability, and could specifically detecting prometryn. Furthermore, the utility of the aptasensor was validated by measuring prometryn in environmental and biological components. Therefore, this study provides a robust and ultrasensitive aptasensor for accurate detection for prometryn pollution.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|