1
|
Ohore OE, Zhang J, Zhou S, Sanganyado E, Gu JD, Yang G. Tetracycline and quinolone contamination mediate microbial and antibiotic resistant gene composition in epiphytic biofilms of mesocosmic wetlands. WATER RESEARCH 2024; 267:122484. [PMID: 39321725 DOI: 10.1016/j.watres.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs). Results showed that submerged plants absorbed more antibiotics than sediment. Both TCs and QNs disrupted microbial communities in different ways and increased eukaryotic community diversity in a concentration-dependent manner (2-4 mg/L for CIP, 4-8 mg/L for TC). TCs mainly inhibited epiphytic bacteria, while CIP increased bacterial phyla abundance. TC reduced Cyanobacteriota, Acidobacteriota, and Patescibacteria but increased Bacillota, Bacteroidota, and Armatimonadota. In contrast, CIP reduced Bacteroidota, Cyanobacteriota, and Gemmatimonadota but increased Bacillota, Planctomycetota, and Acidobacteriota. Significant differences in ARG profiles were observed between QNs and TCs, with TCs having a more substantial effect on ARGs due to their stronger impact on bacterial communities. Both antibiotics raised ARG levels with higher concentrations, particularly for multidrug resistance, tetracyclines, trimethoprim, sulfonamides, aminoglycosides, and fosfomycin, emphasizing their role in antimicrobial resistance. The study suggests that antibiotics can either stimulate or inhibit ARGs depending on their effects on bacterial communities. This study provides key evidence on the ecological mechanisms underlying the impact of TCs and QNs on epiphytic microbes of mesocosm wetlands.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Jingli Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Sanji Zhou
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE2 4PB, UK
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
| | - Guojing Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
2
|
Nwankwegu AS, Yang G, Zhang L, Xie D, Ohore OE, Adeyeye OA, Li Y, Yao X, Song Z, Yonas MW. Ecosystem anthropogenic enrichments enhance Chroococcus abundance and suppress Anabaena during cyanobacterial-dominated spring blooms in the Pengxi River, Three Gorges Reservoir, China. MARINE POLLUTION BULLETIN 2023; 193:115141. [PMID: 37295313 DOI: 10.1016/j.marpolbul.2023.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Taxa-specific responses to the increasing anthropogenic eutrophication offer promising insights for mitigating harmful algal blooms (HABs) in freshwaters. The present study evaluated the HABs species dynamics in response to the ecosystem anthropogenic enrichment during cyanobacterial-dominated spring HABs in the Pengxi River, Three Gorges Reservoir, China. Results show significant cyanobacterial dominance with a relative abundance (RA = 76.54 %). The ecosystem enrichments triggered shifts in the HABs community structure from Anabaena to Chroococcus, especially in the culture involving iron (Fe) addition (RA = 66.16 %). While P-alone enrichment caused a dramatic increase in the aggregate cell density (2.45 × 108 cells L-1), the multiple enrichment (NPFe) led to maximum biomass production (as chl-a = 39.62 ± 2.33 μgL-1), indicating that nutrient in conjunction with the HABs taxonomic characteristics e.g., tendency to possess high cell pigment contents rather than cell density can potentially determine massive biomass accumulations during HABs. The stimulation of growth as biomass production demonstrated by both P-alone and the multiple enrichments, NPFe indicates that although P exclusive control is feasible in the Pengxi ecosystem, it can only guarantee a short-term reduction in HABs magnitude and duration, thus a lasting HABs mitigation measure must consider a policy recommendation involving multiple nutrient management, especially N and P dual control strategy. The present study would adequately complement the concerted effort in developing a rational predictive framework for freshwater eutrophication management and HABs mitigations in the TGR and elsewhere with similar anthropogenic stressors.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China; College of Environment, Hohai University, No.1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Guanglang Yang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China.
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China
| | - Okugbe E Ohore
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Oluwafemi Adewole Adeyeye
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400716, China
| | - Yiping Li
- College of Environment, Hohai University, No.1 Xikang Road, Gulou District, Nanjing 210098, China
| | - Xuexing Yao
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zenghui Song
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Muhammad W Yonas
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|