1
|
de Jourdan B, Philibert D, McGrath J. Predicting the toxicity of physically and chemically dispersed oil: a modelling case study with American lobster larvae (Homarus americanus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:124-135. [PMID: 39887268 DOI: 10.1093/etojnl/vgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 02/01/2025]
Abstract
Determining the impact of an oil spill on aquatic ecosystems is a challenge. Because of the chemical complexity of crude oil, risk assessments rely on quantitative structure associated relationships to group chemical classes of compounds based on similar modes of toxicity. Quantitative structure associated relationships like the target lipid model can be used to determine species sensitivity by determining the critical target lipid body burden (CTLBB) and can be used to calculate the toxic units (TU) of a mixture. In this study we used the CTLBB generated from single polycyclic aromatic compound toxicity data and the analytical chemistry of whole oil to predicted and validate toxicity of both water-accommodated fraction (WAF) of crude oil and chemically dispersed WAF (CEWAF) to American lobster (Homarus americanus) larvae. A two-step procedure for modelling whole oil partitioning was utilized to compute the dissolved components in each of the WAF and CEWAF dilutions. Then, a species and life stage specific CTLBB derived for lobster larvae was applied in PetroTox to compute the TUs of exposure solution. The approach used in this study was able to effectively predict the effects observed in the exposures and can be integrated into oil spill fate and effects models to improve the oil spill assessment and response.
Collapse
|
2
|
French-McCay DP, Robinson HJ, Adams JE, Frediani MA, Murphy MJ, Morse C, Gloekler M, Parkerton TF. Parsing the toxicity paradox: Composition and duration of exposure alter predicted oil spill effects by orders of magnitude. MARINE POLLUTION BULLETIN 2024; 202:116285. [PMID: 38555802 DOI: 10.1016/j.marpolbul.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/13/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Oil spilled into an aquatic environment produces oil droplet and dissolved component concentrations and compositions that are highly variable in space and time. Toxic effects on aquatic biota vary with sensitivity of the organism, concentration, composition, environmental conditions, and frequency and duration of exposure to the mixture of oil-derived dissolved compounds. For a range of spill (surface, subsea, blowout) and oil types under different environmental conditions, modeling of oil transport, fate, and organism behavior was used to quantify expected exposures over time for planktonic, motile, and stationary organisms. Different toxicity models were applied to these exposure time histories to characterize the influential roles of composition, concentration, and duration of exposure on aquatic toxicity. Misrepresenting these roles and exposures can affect results by orders of magnitude. Well-characterized laboratory studies for <24-hour exposures are needed to improve toxicity predictions of the typically short-term exposures that characterize spills.
Collapse
Affiliation(s)
| | | | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
3
|
Luter HM, Laffy P, Flores F, Brinkman DL, Fisher R, Negri AP. Molecular responses of sponge larvae exposed to partially weathered condensate oil. MARINE POLLUTION BULLETIN 2024; 199:115928. [PMID: 38141581 DOI: 10.1016/j.marpolbul.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.
Collapse
Affiliation(s)
- Heidi M Luter
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia.
| | - Patrick Laffy
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia
| | - Florita Flores
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia
| | - Rebecca Fisher
- Australian Institute of Marine Science, Crawley 6009, WA, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville 4810, QLD, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
4
|
Brefeld D, Di Mauro V, Kellermann MY, Nietzer S, Moeller M, Lütjens LH, Pawlowski S, Petersen-Thiery M, Schupp PJ. Acute Toxicity Assays with Adult Coral Fragments: A Method for Standardization. TOXICS 2023; 12:1. [PMID: 38276714 PMCID: PMC10818607 DOI: 10.3390/toxics12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Coral reefs are globally declining due to various anthropogenic stressors. Amongst those, chemical pollutants, such as pesticides from agricultural runoff, sewage or an overabundance of personal care products in coastal waters due to intense tourism, may be considered as a local stressor for reef-building corals. The extent to which such chemicals exhibit toxic effects towards corals at environmentally relevant concentrations is currently controversially discussed and existing studies are often based on varying and sometimes deficient test methods. To address this uncertainty, we adapted available methods into a reliable and comprehensive acute coral toxicity test method for the reef-building coral Montipora digitata. The toxicities of the four substances benzophenone-3 (BP-3), Diuron (DCMU), copper (Cu2+ as CuCl2, positive control) and dimethylformamide (DMF, solvent) were assessed in a 96 h semi-static test design. Endpoints such as maximum quantum yield, bleaching, tissue loss and mortality were evaluated with respect to their suitability for regulatory purposes. Overall, the endpoints bleaching and mortality yielded sensitive and robust results for the four tested substances. As the test method follows the principles of internationally standardized testing methods (ISO, OECD), it can be considered suitable for further validation and standardization. Once validated, a standardized test method will help to obtain reproducible toxicity results useful for marine hazard and risk assessment and regulatory decision making.
Collapse
Affiliation(s)
- David Brefeld
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Valentina Di Mauro
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Matthias Y. Kellermann
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Samuel Nietzer
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Mareen Moeller
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
| | - Laura H. Lütjens
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Sascha Pawlowski
- Department of Product Safety, Regulatory Ecotoxicology, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Mechtild Petersen-Thiery
- Product Stewardship and EHS Data Management, BASF Personal Care and Nutrition GmbH, Rheinpromenade 1, 40789 Monheim am Rhein, Germany
| | - Peter J. Schupp
- Environmental Biochemistry Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; (V.D.M.)
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Lee K, Coelho G, Loughery J, de Jourdan B. Advances to the CROSERF protocol to improve oil spill response decision making. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106580. [PMID: 37244122 DOI: 10.1016/j.aquatox.2023.106580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) created a standardized protocol for comparing the toxicity of physically dispersed oil versus chemically dispersed oil to address environmental concerns related to the proposed use of dispersants in the early 2000s. Since then, many revisions have been made to the original protocol to diversify the intended use of the data generated, incorporate emerging technologies, and to examine a wider range of oil types including non-conventional oils and fuels. Under the Multi-Partner Research Initiative (MPRI) for oil spill research under Canada's Oceans Protection Plan (OPP), a network of 45 participants from seven countries representing government, industry, non-profit, private, and academic sectors was established to identify the current state of the science and formulate a series of recommendations to modernize the oil toxicity testing framework. The participants formed a series of working groups, targeting specific aspects of oil toxicity testing, including: experimental conduct; media preparation; phototoxicity; analytical chemistry; reporting and communicating results; interpreting toxicity data; and appropriate integration of toxicity data to improve oil spill effects models. The network participants reached a consensus that a modernized protocol to assess the aquatic toxicity of oil should be sufficiently flexible to address a broad range of research questions in a 'fit-for-purpose' manner, where methods and approaches are driven by the need to generate scientifically-defensible data to address specific study objectives. Considering the many needs and varied objectives of aquatic toxicity tests currently being conducted to support and inform oil spill response decision making, it was also concluded that the development of a one size fits all approach would not be feasible.
Collapse
Affiliation(s)
- Kenneth Lee
- Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Gina Coelho
- Bureau of Safety and Environmental Enforcement, Department of Interior, Sterling VA, United States
| | | | | |
Collapse
|
6
|
Loughery JR, Coelho GM, Lee K, de Jourdan B. Setting the stage to advance oil toxicity testing: Overview of knowledge gaps, and recommendations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106581. [PMID: 37285785 DOI: 10.1016/j.aquatox.2023.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum created a standardized protocol for comparing the in vivo toxicity of physically dispersed oil to chemically dispersed oil to support science-based decision making on the use of dispersants in the early 2000s. Since then, the protocol has been frequently modified to incorporate advances in technology; enable the study of unconventional and heavier oils; and provide data for use in a more diverse manner to cover the growing needs of the oil spill science community. Unfortunately, for many of these lab-based oil toxicity studies consideration was not given to the influence of modifications to the protocol on media chemistry, resulting toxicity and limitations for the use of resulting data in other contexts (e.g., risk assessments, models). To address these issues, a working group of international oil spill experts from academia, industry, government, and private organizations was convened under the Multi-Partner Research Initiative of Canada's Oceans Protection Plan to review publications using the CROSERF protocol since its inception to support their goal of coming to consensus on the key elements required within a "modernized CROSERF protocol".
Collapse
Affiliation(s)
- Jennifer R Loughery
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada.
| | - Gina M Coelho
- Oil Spill Preparedness Division, Response Research Branch, Bureau of Safety and Environmental Enforcement, Sterling, VA, United States
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Benjamin de Jourdan
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada
| |
Collapse
|