1
|
Potentiometric quantitation of general local anesthetics with a new highly sensitive membrane sensor. Talanta 2022; 241:123239. [DOI: 10.1016/j.talanta.2022.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
2
|
Graphene nanoplatelets in potentiometry: A nanocomposite carbon paste and PVC based membrane sensors for analysis of Vilazodone HCl in plasma and milk samples. Talanta 2019; 193:9-14. [DOI: 10.1016/j.talanta.2018.09.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/20/2022]
|
3
|
Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized Enzymes in Biosensor Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E121. [PMID: 30609693 PMCID: PMC6337536 DOI: 10.3390/ma12010121] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022]
Abstract
Enzyme-based biosensing devices have been extensively developed over the last few decades, and have proven to be innovative techniques in the qualitative and quantitative analysis of a variety of target substrates over a wide range of applications. Distinct advantages that enzyme-based biosensors provide, such as high sensitivity and specificity, portability, cost-effectiveness, and the possibilities for miniaturization and point-of-care diagnostic testing make them more and more attractive for research focused on clinical analysis, food safety control, or disease monitoring purposes. Therefore, this review article investigates the operating principle of enzymatic biosensors utilizing electrochemical, optical, thermistor, and piezoelectric measurement techniques and their applications in the literature, as well as approaches in improving the use of enzymes for biosensors.
Collapse
Affiliation(s)
- Hoang Hiep Nguyen
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
| | - Sun Hyeok Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
| | - Ui Jin Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, 99 Daehangno, Yuseong-Gu, Daejeon 34134, Korea.
| | - Cesar D Fermin
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36830, USA.
| | - Moonil Kim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-Gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-Gu, Daejeon 34113, Korea.
- Department of Biology, College of Arts & Sciences, Tuskegee University, Tuskegee, AL 36830, USA.
| |
Collapse
|