1
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
2
|
Shahzadi T, Iqbal S, Riaz T, Zaib M. A comparative study based on localized surface plasmon resonance optical characteristics of green synthesized nanoparticles towards spectrophotometric determination of cupric ions. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tayyaba Shahzadi
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Shazia Iqbal
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Tauheeda Riaz
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Maria Zaib
- Department of Chemistry, University of Jhang, Jhang, Pakistan
| |
Collapse
|
3
|
Zhong S, Zhu L, Wu S, Li Y, Lin M. Photoactive donor-acceptor conjugated macrocycles: New opportunities for supramolecular chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 2022; 246:123487. [PMID: 35487013 DOI: 10.1016/j.talanta.2022.123487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023]
Abstract
Single-atom catalysts have attracted enormous research interest in the field of catalysis owing to their remarkable catalytic activity, excellent stability and outstanding atom utilization. Herein, a new single atom based on single Fe atoms on fluorine-doped (Fe-SAs@FNC) ultrathin carbon nanosheets was successfully synthesized by a polymer-assisted heating method. Experimental evidence showed that the resultant Fe-SAs@FNC with Fe-N4 sites exhibits superior peroxidase-like activity, which oxidizes the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product in the presence of hydrogen peroxide (H2O2). Based on this, an ultrasensitive and highly selective colorimetric detection method for p-phenylenediamine (PPD) in hair dyes and PPD in hair after dyeing was established, which had a wide linear range (0.2-50 μM) and low detection limit (0.07 μM). This method shows satisfactory sensitivity and selectivity.
Collapse
|
5
|
Heterocyclic Crown Ethers with Potential Biological and Pharmacological Properties: From Synthesis to Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyclic organic compounds with several ether linkages in their structure are of much concern in our daily life applications. Crown ethers (CEs) are generally heterocyclic and extremely versatile compounds exhibiting higher binding affinity. In recent years, due to their unique structure, crown ethers are widely used in drug delivery, solvent extraction, cosmetics manufacturing, material studies, catalysis, separation, and organic synthesis. Beyond their conventional place in chemistry, this review article summarizes the synthesis, biological, and potential pharmacological activities of CEs. We have emphasized the prospects of CEs as anticancer, anti-inflammatory, antibacterial, and antifungal agents and have explored their amyloid genesis inhibitory activity, electrochemical, and potential metric sensing properties. The central feature of these compounds is their ability to form selective and stable complexes with various organic and inorganic cations. Therefore, CEs can be used in gas chromatography as the stationary phase and are also valuable for cation chromatographic to determine and separate alkali and alkaline-earth cations.
Collapse
|
6
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
7
|
Vareda JP, Valente AJM, Durães L. Ligands as copper and nickel ionophores: Applications and implications on wastewater treatment. Adv Colloid Interface Sci 2021; 289:102364. [PMID: 33540287 DOI: 10.1016/j.cis.2021.102364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
Modern society depends on many finite natural resources, from which metals are of great importance. Copper and nickel's relevance is due to their vast applications, resulting in high market value and demand. As such, their polluting emissions are also significant and their removal from wastewaters is imperative. Moreover, effluent treatment techniques can be used to recover the metallic cations, via selective processes. In this review, copper and nickel selective ligands in the literature are surveyed. These are most commonly Schiff bases, along with crown ethers and porphyrins. They are usually employed in ion sensing (colorimetric chemosensors or electrodes) with great success - the disruption in response of colorimetric sensors is up to 7% and binding constants are usually at least one order of magnitude greater with the desired cation than with interferents. However, modified adsorbents are also reported. The possibilities of using ionophores in wastewater cleaning, allowing the treatment of effluents and the selective recovery of valuable materials, and their implications on new green policies is discussed.
Collapse
Affiliation(s)
- João P Vareda
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Artur J M Valente
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
8
|
Zubenko AD, Fedorova OA. Aromatic and heteroaromatic azacrown compounds: advantages and disadvantages of rigid macrocyclic ligands. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current approaches to the synthesis of aromatic and heteroaromatic azamacrocycles and their derivatives are summarized and systematized. The relationship between the structure of azacrown compounds and their complexation behaviour towards metal cations is analyzed. The diversity of practical applications of azamacrocyclic derivatives in medicine, biology and analytical and organic chemistry, as well as for the design of molecular devices is demonstrated.
The bibliography includes 307 references.
Collapse
|
9
|
Ghanei-Motlagh M, Karami C, Taher MA, Hosseini-Nasab SJ. Stripping voltammetric detection of copper ions using carbon paste electrode modified with aza-crown ether capped gold nanoparticles and reduced graphene oxide. RSC Adv 2016. [DOI: 10.1039/c6ra10267k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel electrochemical sensor based on reduced graphene oxide (RGO) and kryptofix 21-capped gold nanoparticles (GNPs) has been proposed.
Collapse
Affiliation(s)
- M. Ghanei-Motlagh
- Young Researchers and Elite Club
- Kerman Branch
- Islamic Azad University
- Kerman
- Iran
| | - Ch. Karami
- Department of Chemistry
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
- Iran
| | - M. A. Taher
- Department of Chemistry
- Faculty of Sciences
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - S. J. Hosseini-Nasab
- Department of Chemistry
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| |
Collapse
|