1
|
Nain K, Dhillayan D, Bansal S, Hundal Q, Saharan P, Bhukal S. Adsorption potential of ionic liquid-modified ZnO nanoparticles for highly efficient removal of azo dye: detailed isotherms and kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40083-40099. [PMID: 37335507 DOI: 10.1007/s11356-023-28175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
In this study, bare and ionic liquid-modified ZnO nanoparticles have been fabricated using microwave irradiation method. The fabricated nanoparticles were characterized by different techniques, viz. XRD, FT-IR, FESEM, and UV-Visible spectroscopy, and were explored as adsorbent for effective sequestration of azo dye (Brilliant Blue R-250) from aqueous media. Various factors affecting the adsorption efficiency of synthesized nanoparticles (bare/ionic liquid-modified) such as concentration of dye, pH of reaction media, dose of nanoparticles, and reaction time were thoroughly investigated with varying experimental conditions; on a magnetic stirrer and in a sonicator. The results exhibited a high adsorption efficiency of ionic liquid-modified nanoparticles for removal of dye as compared to the bare one. Also, an enhanced adsorption was observed via sonication in comparison with magnetic stirring. Different isotherms such as Langmuir, Freundlich, and Tempkin were elaborated. Evaluation of adsorption kinetics showed a linear pseudo-second-order equation for adsorption process. The exothermic and spontaneous nature of adsorption was further confirmed by thermodynamic investigations. As per the results obtained, it is suggested that the fabricated ionic liquid-modified ZnO nanoparticles could successfully remediate the toxic anionic dye from aqueous media. Hence, this system can be utilized for large-scale industrial applications.
Collapse
Affiliation(s)
- Karmjeet Nain
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Divya Dhillayan
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Shafila Bansal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Qudrat Hundal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Priya Saharan
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science & Technology, Murthal Sonipat, 131001, India
| | - Santosh Bhukal
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
2
|
Reddy AVB, Rafiq R, Ahmad A, Maulud AS, Moniruzzaman M. Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms. Molecules 2022; 27:molecules27227775. [PMID: 36431876 PMCID: PMC9694219 DOI: 10.3390/molecules27227775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
Collapse
Affiliation(s)
| | - Rehan Rafiq
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Aqeel Ahmad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Abdulhalim Shah Maulud
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Ozola-Davidane R, Burlakovs J, Tamm T, Zeltkalne S, Krauklis AE, Klavins M. Bentonite-ionic liquid composites for Congo red removal from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Synthesis of New Magnetic Crosslinked Poly (Ionic Liquid) Nanocomposites for Fast Congo Red Removal from Industrial Wastewater. NANOMATERIALS 2019; 9:nano9091286. [PMID: 31505761 PMCID: PMC6781077 DOI: 10.3390/nano9091286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022]
Abstract
Advanced materials reliant on cross-linked magnetic poly (ionic liquids) (PILs) have been widely utilized in environmental applications for water purification. The present work demonstrates our preparation of a new magnetic cross-linked PIL based on quaternized 4-vinyl-pyridine-co-acrylamide (QVP/AAm). The chemical composition, thermal stability, magnetic properties, morphology, particle sizes, and zeta potential of the magnetic QVP/AAm composites were investigated. Fast adsorption and desorption kinetics, high adsorption capacity, rapid magnetic separation, and the absence of secondary pollution in the adsorption process make QVP/AAm-Fe3O4 a highly effective adsorbent for the elimination of anionic acidic Congo red contaminants from industrial wastewater.
Collapse
|
6
|
Chaukura N, Moyo W, Mamba BB, Nkambule TI. Abatement of humic acid from aqueous solution using a carbonaceous conjugated microporous polymer derived from waste polystyrene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3291-3300. [PMID: 29147989 DOI: 10.1007/s11356-017-0691-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Humic acid (HA) is a major constituent of natural organic matter (NOM) found in water systems. Although NOM generally does not have any known harmful effects to humans, it imparts repulsive organoleptic properties to water, reacts with disinfectants to produce toxic products, and interferes with the efficiency of water treatment processes. The removal of NOM and related compounds from water is therefore important to render water potable and suitable for other applications. In this work, a hitherto unreported carbonaceous conjugated microporous polymer (CCMP) prepared through the organic-polymeric-precursor-controlled carbonization of hypercrosslinked post-consumer waste polystyrene (WPS) was evaluated for its capacity to remove HA from synthetic wastewater. This advanced material retained the morphology of the precursor material, while its porosity and chemical integrity were significantly improved. The approach is an environmentally friendly way of handling WPS while at the same time remediating NOM-contaminated water. Overall, with a maximum adsorption capacity of 340 mg/g in batch experiments, and a maximum initial removal rate of 95.7% in column experiments, the results showed that CCMP can be used for the remediation of HA-contaminated water at high pH.
Collapse
Affiliation(s)
- Nhamo Chaukura
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering, and Technology, University of South Africa, Johannesburg, South Africa.
| | - Welldone Moyo
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering, and Technology, University of South Africa, Johannesburg, South Africa
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering, and Technology, University of South Africa, Johannesburg, South Africa
| | - Thabo I Nkambule
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering, and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
7
|
Chaukura N, Mamba BB, Mishra SB. Conversion of post consumer waste polystyrene into a high value adsorbent and its sorptive properties for Congo Red removal from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:280-289. [PMID: 28232242 DOI: 10.1016/j.jenvman.2017.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
Using post-consumer waste polystyrene (WPS), a conjugated microporous polymer (CMP) was synthesised and activated into a sulphonic-group carrying resin (SCMP). The surface chemistry of the materials showed a decline in both the aromatic CH and aliphatic CH2 stretching vibrations confirming successful crosslinking. The synthesised polymers were thermally stable with decomposition temperatures above 300 °C, had surface heterogeneity, and BET surface areas of 752 and 510 m2/g, respectively. A distribution of pores ranging from meso- to micro-pores was comparable to other CMPs. The materials had maximum adsorption capacities of 500 and 357 mg/g for Congo Red (CR) on CMP and SCMP, respectively. Converting waste polystyrene to an adsorbent is a cost effective way of handling waste and simultaneously providing material for wastewater remediation.
Collapse
Affiliation(s)
- Nhamo Chaukura
- Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa.
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| | - Shivani B Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
8
|
Wang L, Mao C, Sui N, Liu M, Yu WW. Graphene oxide/ferroferric oxide/polyethylenimine nanocomposites for Congo red adsorption from water. ENVIRONMENTAL TECHNOLOGY 2017; 38:996-1004. [PMID: 27485912 DOI: 10.1080/09593330.2016.1215352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/17/2016] [Indexed: 06/06/2023]
Abstract
Graphene oxide/ferroferric oxide/polyethylenimine (GO/Fe3O4/PEI) nanocomposites were synthesized by an in situ growth of Fe3O4 nanoparticles on GO sheets, and then modified by PEI. The GO/Fe3O4/PEI nanocomposites showed extremely high removal efficiency for anionic dye Congo Red (CR) due to the positively charged PEI molecules (methylene blue was also tested but with low adsorption capacity due to its cationic property). The CR removal capacity was 574.7 mg g-1, higher than most of reported results. The adsorption kinetics could be well described by a pseudo-second-order model. Furthermore, GO/Fe3O4/PEI nanocomposites could be easily recycled by magnetic separation. The removal efficiency remained above 70% after five cycles.
Collapse
Affiliation(s)
- Lina Wang
- a College of Environment and Safety Engineering , Qingdao University of Science and Technology , Qingdao , People's Republic of China
| | - Changming Mao
- b College of Materials Science and Engineering , Qingdao University of Science and Technology , Qingdao , People's Republic of China
| | - Ning Sui
- b College of Materials Science and Engineering , Qingdao University of Science and Technology , Qingdao , People's Republic of China
| | - Manhong Liu
- b College of Materials Science and Engineering , Qingdao University of Science and Technology , Qingdao , People's Republic of China
| | - William W Yu
- b College of Materials Science and Engineering , Qingdao University of Science and Technology , Qingdao , People's Republic of China
- c Department of Chemistry and Physics , Louisiana State University Shreveport , Shreveport , LA , USA
| |
Collapse
|
9
|
Elhamifar D, Shojaeipoor F, Yari O. Thiopropyl-containing ionic liquid based periodic mesoporous organosilica as a novel and efficient adsorbent for the removal of Hg(ii) and Pb(ii) ions from aqueous solutions. RSC Adv 2016. [DOI: 10.1039/c6ra08523g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a novel thiol-functionalized ionic liquid based periodic mesoporous organosilica (PMO-IL-SH) is prepared, characterized and its efficiency for the removal of mercury and lead ions from aqueous solutions is investigated.
Collapse
|