1
|
Sultan M, Mohamed OA, El-Masry HM, Taha G. Fabrication and evaluation of antimicrobial cellulose/Arabic gum hydrogels as potential drug delivery vehicle. Int J Biol Macromol 2023:125083. [PMID: 37247718 DOI: 10.1016/j.ijbiomac.2023.125083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
This article aims to assess the highly potent antimicrobial hydrogels composed of cellulose and Arabic gum containing sulfadiazine drug (sulfadiazine-loaded Cel/AG) as drug-targeting carriers. ATR-IR, SEM/ EDS, XRD, and XPS methods were used to investigate the hydrogel. The highest water absorption % was 489.93 ± 4.5 at pH 7.4. Pseudo-second order and Fickian diffusion govern the swelling behavior. The maximal sulfadiazine loading percent was 82.291 ± 74. The in-vitro drug release exhibited significant responses in physiologically simulated pH values. The maximum cumulative release percent was 66.42 ± 0.6 % at pH 7.4. The drug release is predicted by the first order and Korsmeyer-Peppas models. The first diffusion coefficient was (Di = 9.207 ± 47 × 10-3 cm2/h) and the late one was (DL = 5.64 ± 9.0 × 10-2 cm2/h) at pH 7.4. That hydrogel is well-thought-out a potential drug delivery vehicle. The thermal stability of the Cel/AG hydrogel drug carrier has been enhanced by the incorporation of sulfadiazine which is evidenced by increasing the total activation approximately two-fold. The total activation energy of Cel/AG and sulfadiazine-loaded Cel/AG hydrogels were -0.07362 and -0.2092 J/mol. The sulfadiazine medication's inhibitory effect was markedly enhanced when it was incorporated into the Cel/AG hydrogel films.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ola A Mohamed
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
2
|
Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Baseer RA, Ewies EF, Ismail AM. Synthesis, optical and dielectric properties of polyacryloyloxy imino fluorophenyl acetamide and polyacryloyloxy imino fluorophenyl acetamide-co-polystyrene sulfonate. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOur scope is synthesis a new poly fluorobenzamide oxime ester and study its structural, optical, and dielectric properties. Consequently, ((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl) acetamide) (AIFPA) was as-synthesized via a condensation reaction of (E)-N-(4-fluorophenyl)-2-(hydroxyimino) acetamide with acrylic acid to polymerize it via free radical polymerization (PAIFPA). over and above, the synthesized PAIFPA was inserted in more polymerization action with polystyrene sulfonate through the grafting process (PAIFPA-co-PSS). The chemical structures and morphology of AIFPA, PAIFPA, and PAIFPA-co-PSS were characterized by 1H NMR, FTIR, and XRD. The crystallinity index of PAIFPA, and PAIFPA-co-PSS was studied, affording that PAIFPA-co-PSS has the highest crystallinity. Moreover, The optical bandgap that obtained from absorbance analysis was encountered to be in the range of 2.6 eV to 3.5 eV. Ultimately, the dielectric properties of PAIFPA, and PAIFPA-co-PSS showed that electric conductivity values ranged from 6.12 × 10–8 to 7.11 × 10–7 S.cm−1, and 5.48 × 10–10 to 7.75 × 10–8 S.cm−1, respectively. It has a great deal of interest of PAIFPA-co-PSS which has wide band gap energy as short-wavelength light absorbers to be used in tandem polymer solar cells.
Collapse
|
4
|
Desai N, Monapara J, Jethawa A, Khedkar V, Shingate B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200123. [PMID: 35575467 DOI: 10.1002/ardp.202200123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/26/2022]
Abstract
As a pharmacologically important heterocycle, oxadiazole paved the way to combat the problem associated with the confluence of many commercially available drugs with different pharmacological profiles. The present review focuses on the potential applications of five-membered heterocyclic oxadiazole derivatives, especially 1,2,4-oxadiazole, 1,2,5-oxadiazole, and 1,3,4-oxadiazole, as therapeutic agents. Designing new hybrid molecules containing the oxadiazole moiety is a better solution for the development of new drug molecules. The designed molecules may accumulate a biological profile better than those of the drugs currently available on the market. The present review will guide the way for researchers in the field of medicinal chemistry to design new biologically active molecules based on the oxadiazole nucleus. Antitubercular, antimalarial, anti-inflammatory, anti-HIV, antibacterial, and anticancer activities of various oxadiazoles have been reviewed extensively here.
Collapse
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Jahnvi Monapara
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Aratiba Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Vijay Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Baseer RA, Dacrory S, El Gendy MAM, Ewies EF, Kamel S. A biodegradable film based on cellulose and thiazolidine bearing UV shielding property. Sci Rep 2022; 12:7887. [PMID: 35550531 PMCID: PMC9098501 DOI: 10.1038/s41598-022-11457-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
The current rationale is exploring new eco-friendly UV- shielding films based on cellulose and thiazolidine. Cellulose was oxidized to dialdehyde cellulose (DAC) and tricarboxy cellulose (TCC) by periodate and TEMPO/periodate/hypochlorite, respectively. While E-3-amino-5-(phenyldiazenyl)-2-thioxothiazolidin-4-one (TH) was synthesized by coupling diazonium salt with the 5-methylene of 2-thioxo-4-thiazolidinone. DAC was then coupled with TH via Schiff base reaction and incorporated onto TCC with different ratios to get UV-shielding films. 1HNMR, infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA) were used to investigate the chemical structure of the synthesized materials. In addition, the films' morphology, thermal, mechanical, and UV-shielding properties were investigated. The UV-shielding studies revealed that the film with 10% DAC-TH has 99.88, 99.99, and 96.19% UV-blocking (UVB), UV-absorbance (UVA), and Ultra-violet protection (UPF), respectively. Moreover, the prepared films demonstrated promising antimicrobial activity against Escherichia coli, S. aureus, P. aeruginosa, and Candida albicans. Finally, the prepared films showed no cytotoxic effects on normal human skin fibroblast's HFB-4 cell line.
Collapse
Affiliation(s)
- Rasha A Baseer
- Department of Polymers and Pigments technology, Chemical Industries Research Institute, National Research Centre, 33ElBohouth St., (Former El Tahrir), Dokki, 12622, Giza, Egypt.
| | - Sawsan Dacrory
- Cellulose and Paper Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Mohamed A M El Gendy
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 ElBohouth St., (Former El Tahrir), Dokki, P.O. 12622, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 ElBohouth St., (Former El Tahrir), Dokki, P.O. 12622, Giza, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, Chemical Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Sultan M, Nagieb ZA, El-Masry HM, Taha GM. Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe 3+/silver nanoparticles for water disinfection and enhanced adsorption of basic methylene blue dye. Int J Biol Macromol 2022; 196:180-193. [PMID: 34813782 DOI: 10.1016/j.ijbiomac.2021.11.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
In this study, we report the development of physically cross-linked hydroxyethyl cellulose grafted polyacrylic acid-co-polyacrylamide/silver nanocomposite [Ag@HEC-g-P(AA-co-AM)-Fe3+] possesses excellent antimicrobial and enhanced MB adsorption. A green in-situ reduction process was used to prepare silver nanoparticles. UV-Vis spectroscopy, TEM, ATR-IR, XRD, SEM-EDS were used to analyze the green produced silver nanoparticles and Ag@HEC-g-P(AA-co-AM)-Fe3+. The swelling ratio of Ag@HEC-g-P(AA-co-AM)-Fe3+ is dependent on AgNPs content and pH. The swelling kinetics fitted with Pseudo-second order. The cumulative release#% of AgNPs was 29.63 ± 1.7%, respectively up to 10 h and its kinetics obey Korsmeyer-Peppas model. The grafting to HEC and incorporation of AgNPs into HEC-g-P(AA-co-AM)-Fe3+ enhances the thermal stabilities and increases total activation energies from 19,122.2 to 66,287.1 KJ mol. Ag@HEC-g-P(AA-co-AM)-Fe3+ has powerful antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus leutus, Staphyllococus aureus. The maximum adsorption capacity of MB was 133.38 ± 1.25 mg/g at nanocomposite concentration (300 mg/L), pH (9.0), and MB concentration (5 mg/L). To anticipate the adsorption mechanism, Pseudo-first and second-order models, as well as three isotherm models (Langmuir, Freundlich, and Temkin) were used to model adsorption kinetics. The nonlinear Langmuir models and second-order kinetics were the most appropriate.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Zenat Adeeb Nagieb
- Cellulose and Paper Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, Pharmaceutical and Drug, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada M Taha
- Pre-treatment, and Finishing of Cellulose-based Textiles Department, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
7
|
Ding F, Zhang S, Ren X, Huang TS. Development of PET Fabrics Containing N-halamine Compounds with Durable Antibacterial Property. FIBERS AND POLYMERS 2022. [PMCID: PMC8352750 DOI: 10.1007/s12221-021-0448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antibacterial textile materials are widely used in daily life, but most are disposable products with poor antibacterial durability. N-halamine can rapidly inactivate microorganisms, has good stability, and shows great potential applications in antibacterial fabrics. In this study, an N-halamine monomer precursor was synthesized and treated onto PET fabrics. The treated PET fabrics were rendered antibacterial functionality after chlorination, and exhibited good antibacterial properties with inactivation rate of 100.0 % for both E. coli O157:H7 and S. aureus. After 50 wash cycles, the chlorinated treated PET fabrics could maintain 80.0 % antibacterial efficacy, demonstrating durable antibacterial properties. Storage stability and UV irradiation tests showed that the treated PET fabrics had remarkable regenerable properties. The reduction of the breaking strength was within 12 % after treatment, which is in a satisfying range in antimicrobial finishing.
Collapse
Affiliation(s)
- Fang Ding
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Shumin Zhang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 China
| | - Tung-Shi Huang
- Department of Poultry Science, Auburn University, Auburn, Alabama, 36849 USA
| |
Collapse
|
8
|
Taha GM, Mansor ES, Sultan M. Development of Arabic gum-based AgTiO 2 nanocomposite hydrogel as high efficient adsorbent of cationic dye methylene blue from water. Int J Biol Macromol 2021; 193:1859-1870. [PMID: 34774588 DOI: 10.1016/j.ijbiomac.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
The chemically crosslinked silver titanium dioxide embedded Arabic gum grafted polyacrylamide-polyacrylonitrile nanocomposite AgTiO2@AG-g-P(AM-co-AN)was successfully synthesized and investigated by ATR-IR, XRD, and SEM. The synthesis optimization parameters of AG-g-P(AM-co-AN)were 5% AG, 1/0.5 AM/AN monomer molar ratio, 0.5 mg MBA cross-linker, and AgTiO2 content (1%) gives AgTiO2@AG-g-P(AM-co-AN) nanocomposite. While adsorption studies for AgTiO2@AG-g-P(AM-co-AN) exhabited the maximum adsorption capacity (104.50 ± 3.02 mg/g) at concentration (150 mg/L), MB concentration (15 mg/L) and pH (8.0). The adsorption nonlinear kinetics models were used. Pseudo-second order governs the adsorption process, and the Langmuir model is more suited than Freundlich and Temkin.
Collapse
Affiliation(s)
- Ghada M Taha
- Pre-treatment and Finishing of Cellulosic Fibers, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Cairo, Egypt.
| | - E S Mansor
- Water Treatment, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Cairo, Egypt
| | - Maha Sultan
- Packaging Materials, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Cairo, Egypt
| |
Collapse
|