1
|
Wali AF, Pillai JR, Talath S, Shivappa P, Sridhar SB, El-Tanani M, Rangraze IR, Mohamed OI, Al Ani NN. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Curr Issues Mol Biol 2025; 47:30. [PMID: 39852145 PMCID: PMC11764082 DOI: 10.3390/cimb47010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Pooja Shivappa
- Translational Medicinal Research Centre, Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Imran Rashid Rangraze
- RAK College of Medical Sciences, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Omnia Ibrahim Mohamed
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| | - Nowar Nizar Al Ani
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| |
Collapse
|
2
|
Mkhonto C, Mokgehle SN, Mbeng WO, Ramarumo LJ, Ndlhovu PT. Review of Mimusops zeyheri Sond. (Milkwood): Distribution, Utilisation, Ecology and Population Genetics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2943. [PMID: 39458890 PMCID: PMC11511078 DOI: 10.3390/plants13202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Mimusops zeyheri Sond. (Milkwood) is an indigenous fruit tree species with considerable ecological, cultural, and nutritional significance that remains underexploited. This review synthesizes current knowledge on its distribution, taxonomy, phytochemistry, ethnomedicinal applications, ecological functions, genetic diversity, and biotechnological potential. A systematic literature search, spanning 1949 to April 2024, yielded 87 relevant publications from an initial 155. Mimusops zeyheri plays a crucial role in supporting the cultural traditions and economic activities of Indigenous Southern African Communities. Its distribution encompasses South, East, and Southern Tropical Africa, with substantial populations across South African provinces. Ethnomedicinally, various plant parts treat conditions including wounds, gastrointestinal issues, and diabetes. The leaves (34%) and roots (32%) are used, with infusion (33%) and decoction (31%) as primary preparation methods. Oral administration (70%) is the most common, primarily addressing skin conditions (18%). Despite its nutritional richness, a standardized nutrient profile is lacking. Limited genetic diversity studies underscore the need for further research. This study highlights Mimusops zeyheri's multifaceted importance and research gaps, particularly in other Southern African countries. Future investigations should focus on comprehensive phytochemical analysis, ethnomedicinal validation, ecological conservation, genetic diversity assessment, and biotechnological applications. Multidisciplinary collaborations are recommended to promote sustainable utilization while preserving traditional practices.
Collapse
Affiliation(s)
- Christeldah Mkhonto
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Salmina Ngoakoana Mokgehle
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Wilfred Otang Mbeng
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Luambo Jeffrey Ramarumo
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Peter Tshepiso Ndlhovu
- School of Biology and Environmental Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| |
Collapse
|
3
|
Narendar K, Rao BS, Tirunavalli S, Jadav SS, Andugulapati SB, Ramalingam V, Babu KS. Synthesis of novel thiazoles bearing lupeol derivatives as potent anticancer and anti-inflammatory agents. Nat Prod Res 2024; 38:2207-2214. [PMID: 36691946 DOI: 10.1080/14786419.2023.2166042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Lupeol is one of the most important metabolite in the class of terpenoids and possess excellent anticancer, anti-inflammatory, anti-diabetic activities etc. In the present study, the different thiazoles and oxazoles bearing lupeol derivatives were prepared to enhance their biological activity. Initially, the in vitro cytotoxic activity results showed that the synthesized lupeol derivatives (9a-9j and 10a-10e) showed significant activity against various cancer cells and the compounds 9h and 10b exhibited excellent activity against CAL27 cells. Further, these compounds 9h and 10b arrest the cell cycle at S phase and induce the late apoptosis in CAL27 cells by downregulating the BcL2 and vimentin expression and upregulating the Bax gene expression. Moreover, the lupeol derivatives showed dose-dependent anti-inflammatory activity by inhibiting the secretion of IL-6 cytokines in LPS-induced Raw 264.7 cells. Together, these results clearly indicated that the thiazoles and oxazoles bearing lupeol derivatives can used as chemotherapeutic drugs against cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Kummari Narendar
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - B Sambasiva Rao
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satyakrishna Tirunavalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Surender Singh Jadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | - K Suresh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Ethnomedicinal Information on Plants Used for the Treatment of Bone Fractures, Wounds, and Sprains in the Northern Region of the Republic of Benin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8619330. [PMID: 36588593 PMCID: PMC9797300 DOI: 10.1155/2022/8619330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Medicinal plants are frequently used in African countries due to their importance in the treatment of various conditions. In the northern Republic of Benin, traditional healers are recognized as specialists in the treatment of fractures, wounds, and sprains. The present study was conducted to document the practices (diagnosis and materials) and traditional knowledge accumulated by healers in this region on their area of specialty. In addition, literature-based research was performed to support the usage of the most cited plants. Sixty traditional healers identified as "reference persons" from Atakora and Donga departments in the northern Republic of Benin, who specialized in the treatment of fractures, wounds, and sprains, were interviewed in their communities through a semi-structured questionnaire. Information about the practice, age of the healers, medicinal plants used in this treatment, methods of preparation, and administration were collected. Samples of the plant species were also collected, identified, and stored in the national herbarium at the University of Abomey-Calavi, the Republic of Benin. The study enabled the identification of thirty-four (34) species belonging to twenty-three (23) families. Ochna rhizomatosa and Ochna schweinfurthiana (21%) were the most quoted plants among the species, followed by Chasmanthera dependens (12.1%), Piliostigma thonningii (11.3%), and Combretum sericeum (8.1%). These plants were reported to strengthen bones, reduce inflammation, relieve pain, and promote healing in the northern part of the Republic of Benin. Besides their ability to treat fractures, wounds, and sprains, they are also used for multiple purposes in the West African subregions. According to the available literature, some of the plants will need to be investigated for their phytoconstituents and pharmacological activity to validate their ethnobotanical uses. These results confirm the need for documenting traditional knowledge since it represents an opportunity for exploring plant species with potentially good pharmacological effects, which have been barely investigated. Plants identified may constitute a significant source of bioactive compounds in the treatment of various ailments such as skin inflammation and musculoskeletal disorders. They can be further explored to justify their use in traditional Beninese medicine.
Collapse
|
5
|
Baky MH, Elsaid MB, Farag MA. Phytochemical and biological diversity of triterpenoid saponins from family Sapotaceae: A comprehensive review. PHYTOCHEMISTRY 2022; 202:113345. [PMID: 35952770 DOI: 10.1016/j.phytochem.2022.113345] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Sapotaceae is a flowering plants family reported for its richness in triterpenoid saponins. Sapotaceae comprises a large number of fruit-producing plants of nutritional and medicinal value. Different species of family Sapotaceae received a considerable interest owing to their rich triterpenoid saponins content of a myriad pharmacological effects and health benefits. Several databases were searched for collecting papers for this review in the scope of phytochemistry, bioactivity and record of triterpenoid saponins from family Sapotacese such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 1990 till now. Triterpenoid saponins reported from Sapotaceae plants are mostly of protobassic acid, 16-α-hydroxyprotobassic acid, bayogenin, and oleanolic acid derivatives with both monodesmosidic and/or bidesmosidic attached sugar side chains. Besides, the most frequently attached sugar units are glucose, glucoronic acid, apiose, xylose, rhamnose, and arabinose. The reported health effects of Sapotaceae plants in folk medicine in relation to their bioactive saponins were also reviewed with special attention to anti-inflammatory, antiulcer activity, antimicrobial activity, cytotoxic, anti-hypercholesterolemic, antioxidant, and immunomodulatory activities. This review aims to present a holistic compile on the phytochemical and biological diversity of triterpenoid saponins reported from family Sapotaceae with future perspectives.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Mostafa B Elsaid
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt
| |
Collapse
|
6
|
Occurrence and ecological habitat effect on Vitellaria paradoxa (C. F. Gaertn.) parasitism: implication for pest management and plant conservation. Heliyon 2022; 8:e10492. [PMID: 36097485 PMCID: PMC9463590 DOI: 10.1016/j.heliyon.2022.e10492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
7
|
Elsewedy HS, Shehata TM, Soliman WE. Shea Butter Potentiates the Anti-Bacterial Activity of Fusidic Acid Incorporated into Solid Lipid Nanoparticle. Polymers (Basel) 2022; 14:2436. [PMID: 35746012 PMCID: PMC9228747 DOI: 10.3390/polym14122436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fusidic acid (FA) is an efficient anti-bacterial drug proven to be efficient against a wide range of bacteria. Nevertheless, the main restriction in its formulation is the limited solubility. To avoid such an obstacle, the drug is incorporated into the lipid core of the nanolipid formulation. Consequently, the present study was an attempt to formulate nanolipid preparation, mainly, solid lipid nanoparticle (SLN) integrating FA. FA-SLN was prepared using shea butter as a lipid phase owing to its reported anti-bacterial activity. Different FA-SLNs were fabricated using the central composite design (CCD) approach. The optimized formula was selected and integrated into a hydrogel base to be efficiently used topically. FA-SLN-hydrogel was evaluated for its character, morphology, in vitro release and stability. The formula was examined for irritation reaction and finally evaluated for its anti-bacterial performance. The optimized formula showed particle size 283.83 nm and entrapment 73.057%. The formulated FA-SLN-hydrogel displayed pH 6.2, viscosity 15,610 cP, spreadability 51.1 mm and in vitro release 64.6% following 180 min. FA-SLN-hydrogel showed good stability for three months at different conditions (room temperature and refrigerator). It exhibited no irritation reaction on the treated rats. Eventually, shea butter displayed a noteworthy effect against bacterial growth that improved the effect of FA. This would indicate prospective anti-bacterial activity of FA when combined with shea butter in SLN formulation as a promising nanocarrier.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Ash Sharqiyah, Zagazig 44519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| |
Collapse
|
8
|
Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, Singh D, Usman UJ, Ukwuani-Kwaja AN, Muhammad A, Ahmed SJ, Folami SO, Falana MB, Nurudeen QO. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med 2022; 49:102094. [PMID: 36573184 PMCID: PMC9760313 DOI: 10.1016/j.eujim.2021.102094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/09/2023]
Abstract
Introduction For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria,Corresponding author
| | - Sulaiman Sani Kankara
- Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, PMB 2218 Katsina State, Nigeria
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Jamilu Bala Danjuma
- Department of Biochemistry, Faculty of Science, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | - Hafsat Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Dharmendra Singh
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Umar Jaji Usman
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Angela Nnenna Ukwuani-Kwaja
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Sanusi Jega Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Sulaimon Olayiwola Folami
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | | | | |
Collapse
|
9
|
Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, Abdelfattah MAO, Sobeh M. Syzygium aqueum (Burm.f.) Alston Prevents Streptozotocin-Induced Pancreatic Beta Cells Damage via the TLR-4 Signaling Pathway. Front Pharmacol 2021; 12:769244. [PMID: 34912223 PMCID: PMC8667316 DOI: 10.3389/fphar.2021.769244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Although several treatments are available for the treatment of type 2 diabetes mellitus, adverse effects and cost burden impose the search for safe, efficient, and cost-effective alternative herbal remedies. Syzygium aqueum (Burm.f.) Alston, a natural anti-inflammatory, antioxidant herb, may suppress diabetes-associated inflammation and pancreatic beta-cell death. Here, we tested the ability of the bioactive leaf extract (SA) to prevent streptozotocin (STZ)-induced oxidative stress and inflammation in pancreatic beta cells in rats and the involvement of the TLR-4 signaling pathway. Non-fasted rats pretreated with 100 or 200 mg kg-1 SA 2 days prior to the STZ challenge and for 14 days later had up to 52 and 39% reduction in the glucose levels, respectively, while glibenclamide, the reference standard drug (0.5 mg kg-1), results in 70% reduction. Treatment with SA extract was accompanied by increased insulin secretion, restoration of Langerhans islets morphology, and decreased collagen deposition as demonstrated from ELISA measurement, H and E, and Mallory staining. Both glibenclamide and SA extract significantly decreased levels of TLR-4, MYD88, pro-inflammatory cytokines TNF-α, and TRAF-6 in pancreatic tissue homogenates, which correlated well with minimal pancreatic inflammatory cell infiltration. Pre-treatment with SA or glibenclamide decreased malondialdehyde, a sensitive biomarker of ROS-induced lipid peroxidation, and restored depleted reduced glutathione in the pancreas. Altogether, these data indicate that S. aqueum is effective in improving STZ-induced pancreatic damage, which could be beneficial in treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Heba Osama Mohammed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|