1
|
Mavvaji M, Muhammed MT, Onem E, Aslan HG, Alhag SK, Akkoc S. Synthesis, Cytotoxic Activity, Antiquorum Sensing Effect, Docking and Md Simulation of Novel 1,3-Disubstituted 2-Mercapto-1H-Benzo[D]Imidazolium Chlorides. J Biochem Mol Toxicol 2025; 39:e70248. [PMID: 40192579 PMCID: PMC11974491 DOI: 10.1002/jbt.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
A series of benzimidazolium chlorides (2a-c) and their corresponding 2-mercapto derivatives (3a-c) were proficiently synthesized and analyzed by NMR and LC-MS spectra. The in vitro cytotoxic assay demonstrated that some synthesized compounds were active on the cancer cell lines. The binding potential of the most active three compounds to topoisomerase II alpha (topo2α) was explored to unveil the possible mode of action for the cytotoxic activity. The binding potential was examined through molecular docking. The stability of compound-enzyme complexes from docking was investigated through molecular dynamics (MD) simulation. The docking study revealed that the three compounds (3a-c) showed the ability to bind to the enzyme. However, the binding strength of compounds was weaker than that of the standard drug, doxorubicin. The MD simulation analysis demonstrated that compounds 3a and 3b gave relatively stable complexes with the enzyme and thus they would remain inside the binding pocket during the simulation period. Furthermore, the pharmacokinetic properties of the relatively active compounds were computed in silico. The computation disclosed that all of compounds exhibited drug-like properties. It is worth mentioning that all of them were found to be nontoxic. In furtherance, the inhibitory effect of compounds (3a-c) on the quorum sensing system was inspected using the biomonitor strains Chromobacterium violaceum 026, Chromobacterium. violaceum VIR07 and Pseudomonas aeruginosa PAO1. In this regard, we focused on the appraisal of the virulence factors, including pyocyanin, elastase, and biofilm formation that are created by P. aeruginosa PAO1 as the source of infectious diseases. As a result, it was determined that all examined compounds displayed statistically significant inhibition effects, and the highest activity was observed on elastase production with an inhibition rate of 84-86%.
Collapse
Affiliation(s)
- Mohammad Mavvaji
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel UniversityIspartaTürkiye
| | - Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical ChemistrySuleyman Demirel UniversityIspartaTürkiye
| | - Ebru Onem
- Faculty of Pharmacy, Department of Pharmaceutical MicrobiologySuleyman Demirel UniversityIspartaTürkiye
| | - Halime Güzin Aslan
- Faculty of Sciences, Department of ChemistryErciyes UniversityKayseriTürkiye
| | - Sadeq K. Alhag
- Health Specialties, Basic Sciences and Applications Unit, Applied College, Mohayil AsirKing Khalid UniversityAbhaSaudi Arabia
| | - Senem Akkoc
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel UniversityIspartaTürkiye
- Faculty of Engineering and Natural SciencesBahçeşehir UniversityIstanbulTürkiye
| |
Collapse
|
2
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
3
|
Katiyar P, Kalpana, Srivastava A, Singh CM. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review. Crit Rev Oncog 2025; 30:43-58. [PMID: 39819434 DOI: 10.1615/critrevoncog.2024056541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.
Collapse
Affiliation(s)
- Pratima Katiyar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Kalpana
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Aditi Srivastava
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Chandra Mohan Singh
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| |
Collapse
|
4
|
Peretz E, Musa S. Design, Synthesis, and Characterization of Novel Cannabidiol-Based Derivatives with Potent Antioxidant Activities. Int J Mol Sci 2024; 25:9579. [PMID: 39273525 PMCID: PMC11395037 DOI: 10.3390/ijms25179579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In recent years, extensive research has focused on cannabidiol (CBD), a well-studied non-psychoactive component of the plant-derived cannabinoids. CBD has shown significant therapeutic potential for treating various diseases and disorders, including antioxidants and anti-inflammatory effects. Due to the promising therapeutic effect of CBD in a wide variety of diseases, synthetic derivatization of this compound has attracted the attention of drug discovery in both industry and academia. In the current research, we focused on the derivatization of CBD by introducing Schiff base moieties, particularly (thio)-semicarbazide and aminoguanidine motifs, at the 3-position of the olivetolic ring. We have designed, synthesized, and characterized new derivatives based on CBD's framework, specifically aminoguanylhydrazone- and (thio)-semicarbazones-CBD-aldehyde compounds. Their antioxidant potential was assessed using FRAP and DPPH assays, alongside an evaluation of their effect on LDL oxidation induced by Cu2+ and AAPH. Our findings suggest that incorporating the thiosemicarbazide motif into the CBD framework produces a potent antioxidant, warranting further investigation.
Collapse
Affiliation(s)
- Eliav Peretz
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| |
Collapse
|
5
|
Sahiba N, Teli P, Meena P, Agarwal S. Exploring the Synthetic and Antioxidant Potential of 1,2-Disubstituted Benzimidazoles Using [Et 3NH][HSO 4] Ionic Liquid Catalyst. Chem Biodivers 2024; 21:e202301159. [PMID: 37718514 DOI: 10.1002/cbdv.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
An [Et3NH][HSO4] ionic-liquid catalyzed, intermolecular C-N bond formation for 1,2-disubstituted benzimidazole synthesis was achieved by the reaction of OPD and substituted aldehydes at ambient reaction conditions. Operational simplicity, use of easily available substrate and reagents, good yields (74-95 %) in short reaction time (4-18 min), simple work-up, and column chromatographic free synthesis are the remarkable features of this new protocol. The applicability of [Et3NH][HSO4] ionic-liquid as a green and inexpensive catalyst with good recyclability and compatibility with a broad range of functional group having heteroatom, electron-withdrawing, and electron-releasing groups manifested the sustainability, eco-friendliness, and efficiency of the present methodology. Moreover, the antioxidant studies of the synthesized compounds using DPPH and ABTS assays were appealing and several synthesized compounds showed significant antioxidant activity.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Priyadarshi Meena
- Cancer Biology Lab, Department of Zoology, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
6
|
Sevinç G, Doğan E, Mansuroğlu S, Gurbanov R. Synthesis and Photophysical Characterizations of Benzimidazole Functionalized BODIPY Dyes. J Fluoresc 2024:10.1007/s10895-024-03688-8. [PMID: 38587711 DOI: 10.1007/s10895-024-03688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Herein, a series of new BODIPY dyes substituted by 2-phenyl benzimidazole units at the meso (C8) position including methyl/ethyl, phenyl, or p-methoxyphenyl moieties at the distal and proximal positions of the BODIPY core have been successfully synthesized and their photophysical characteristics were analyzed. Experimentally investigating absorption and fluorescence profiles in the THF media was followed by density functional theory (DFT) calculations to clarify photophysical features. Theoretical analyses have revealed that upon excitation, both electrons and holes are confined solely within the BODIPY core. The energy levels of the frontier molecular orbitals converge depending on the presence of the phenyl and p-methoxyphenyl substituents. The orbital distributions of both electron and hole were in the -3 and -5 positions, which demonstrates a continuous conjugation with the BODIPY core at these sites. However, the electron density present on the phenyl rings located at the -1, -7, and -8 (meso) positions was found to be negligible. The benzimidazole-BODIPYs exhibited photodynamic activity (Φ∆) ranging from ~ 7% to ~ 11%, determined by a comparative method. Moreover, the compounds have shown to maintain their stability thermally in a non-reactive/inert environment up to temperatures surpassing 300 °C, exhibiting primarily a two-phase decomposition process. These compounds have the potential to function as antibacterial and anti-biofilm agents when used in concentrations ranging from 0.5 to 2.0 mg/mL. The results provide a basis for evaluating heterocyclic benzimidazole units on photophysical processes containing BODIPY chromophores.
Collapse
Affiliation(s)
- Gökhan Sevinç
- Faculty of Science, Department of Chemistry, Bilecik Seyh Edebali University, TR, 11100, Bilecik, Turkey.
| | - Emine Doğan
- Faculty of Science, Department of Chemistry, Bilecik Seyh Edebali University, TR, 11100, Bilecik, Turkey
| | - Sina Mansuroğlu
- Department of Bioengineering, Bilecik Seyh Edebali University, Engineering Faculty, TR, 11100, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Seyh Edebali University, Engineering Faculty, TR, 11100, Bilecik, Turkey.
- Central Research Laboratory (BARUM), Bilecik Seyh Edebali University, 11100, Bilecik, Turkey.
| |
Collapse
|
7
|
Srivastava M, Singh K, Kumar S, Hasan SM, Mujeeb S, Kushwaha SP, Husen A. In silico Approaches for Exploring the Pharmacological Activities of Benzimidazole Derivatives: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1481-1495. [PMID: 38288816 DOI: 10.2174/0113895575287322240115115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative's pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement. OBJECTIVES This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research. METHODS Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed. RESULT The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them. CONCLUSION In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.
Collapse
Affiliation(s)
- Manisha Srivastava
- Reseach scholar, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Samar Mujeeb
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | | | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Bhasker G, Salahuddin, Mazumder A, Kumar R, Kumar G, Ahsan MJ, Shahar Yar M, Khan F, Kapoor B. Hybrids of Benzimidazole-oxadiazole: A New Avenue for Synthesis, Pharmacological Activity and Recent Patents for the Development of More Effective Ligands. Curr Org Synth 2024; 21:976-1013. [PMID: 37916627 DOI: 10.2174/0115701794260740231010111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Two significant families of compounds i.e. 1,3,4-oxadiazole and benzimidazole, have undergone extensive investigation into their pharmacological characteristics and possible therapeutic applications. Both classes have shown their potential in a variety of applications, and because of their synergistic interactions, they may have an even better therapeutic impact when combined. OBJECTIVES To produce a specific molecule with potent therapeutic properties, it is now common methods to combine at least two pharmacophores. This facilitates interaction with several targets, enhances biological functions, or eliminates adverse effects associated with them. CONCLUSION The synthesis of benzimidazole-1,3,4-oxadiazole hybrid compounds has recently involved the use of several synthetic techniques, all of which are detailed in the literature along with the advantages and disadvantages. It has been noted that the structure-activity relationship relates their pharmacological actions to their molecular structure. In order to set the stage for future research, the study aims to provide researchers with an effective toolbox and an understanding of benzimidazole and 1,3,4-oxadiazole hybrid compounds.
Collapse
Affiliation(s)
- Gunjan Bhasker
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Greesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Ambabari Circle, Jaipur, Rajasthan, 302039, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Plot No. 19, Knowledge Park-2, Greater Noida, Uttar Pradesh, 201306, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, 144411, India
| |
Collapse
|
9
|
Wang S, Chen X, Bao L, Liu K, Bi Y, Xue Y, Liu X, Gu Q, Zhang Y. A Magnetic Fe
3
O
4
/Modified Bentonite Composite as Recyclable Heterogeneous Catalyst for Synthesizing 2‐Substituted Benzimidazoles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaodong Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lijian Bao
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yongchang Bi
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yafei Xue
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaowen Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
10
|
Choudhary A, Viradiya RH, Ghoghari RN, Chikhalia KH. Recent Scenario for the Synthesis of Benzimidazole Moiety(2020–2022). ChemistrySelect 2023. [DOI: 10.1002/slct.202204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Annu Choudhary
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Riddhi H. Viradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Rajnikant N. Ghoghari
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
11
|
Shruthi E, Yallappa S, Mallikarjuna NM, Talavara V, Dhananjaya BL, Vaidya VP. 8‐Nitronaphthofuran Fused Urea Derivatives as Potential Antimicrobial Agents: Synthesis, Characterization and Pharmacological Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- E. Shruthi
- Department of Chemistry Kuvempu University Shankaraghatta 577451, Shivammoga District Karnataka India
| | - S. Yallappa
- Department of Chemistry AMC Engineering College Bangalore 560083 Karnataka India
| | - N. M. Mallikarjuna
- Department of Chemistry Kuvempu University Shankaraghatta 577451, Shivammoga District Karnataka India
| | - V. Talavara
- Department of Chemistry Kuvempu University Shankaraghatta 577451, Shivammoga District Karnataka India
| | - B. L. Dhananjaya
- Toxicology and Drug Discovery Unit Jain University Jakksandra post, Kanakapura Taluk Ramanagara 562112 Karnataka India
| | - V. P. Vaidya
- Department of Chemistry Kuvempu University Shankaraghatta 577451, Shivammoga District Karnataka India
| |
Collapse
|
12
|
Rep V, Štulić R, Koštrun S, Kuridža B, Crnolatac I, Radić Stojković M, Paljetak HČ, Perić M, Matijašić M, Raić-Malić S. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling. RSC Med Chem 2022; 13:1504-1525. [PMID: 36561067 PMCID: PMC9749923 DOI: 10.1039/d2md00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
A series of tetrahydropyrimidinyl-substituted benzimidazoles attached to various aliphatic or aromatic residues via phenoxymethylene were synthesised to investigate their antibacterial activities against selected Gram-positive and Gram-negative bacteria. The influence of the type of substituent at the C-3 and C-4 positions of the phenoxymethylene linker on the antibacterial activity was observed, showing that the aromatic moiety improved the antibacterial potency. Of all the evaluated compounds, benzoyl-substituted benzimidazole derivative 15a was the most active compound, particularly against the Gram-negative pathogens E. coli (MIC = 1 μg mL-1) and M. catarrhalis (MIC = 2 μg mL-1). Compound 15a also exhibited the most promising antibacterial activity against sensitive and resistant strains of S. pyogenes (MIC = 2 μg mL-1). Significant stabilization effects and positive induced CD bands strongly support the binding of the most biologically active benzimidazoles inside the minor grooves of AT-rich DNA, in line with docking studies. The predicted physico-chemical and ADME properties lie within drug-like space except for low membrane permeability, which needs further optimization. Our findings encourage further development of novel structurally related 5(6)-tetrahydropyrimidinyl substituted benzimidazoles in order to optimize their antibacterial effect against common respiratory pathogens.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Rebeka Štulić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| | - Sanja Koštrun
- Selvita d.o.oPrilaz baruna Filipovića 2910000 ZagrebCroatia
| | - Bojan Kuridža
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and BiochemistryBijenička cesta 5410000 ZagrebCroatia
| | - Hana Čipčić Paljetak
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mihaela Perić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Mario Matijašić
- Department for Intercellular Communication, Center for Translational and Clinical Research, University of Zagreb School of MedicineŠalata 210000 ZagrebCroatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of ZagrebMarulićev trg 1910000 ZagrebCroatia
| |
Collapse
|
13
|
Liu C, Abbaspour S, Rouki M, Tayebee R, Jarrahi M, Shahri EE. Synergistic promotion of the photocatalytic efficacy of CuO nanoparticles by heteropolyacid‐attached melem: Robust photocatalytic efficacy and anticancer performance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changjiang Liu
- Department of Respiration, Jinan City People’s Hospital Jinan China
| | - Sedighe Abbaspour
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mehdi Rouki
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mahbube Jarrahi
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | | |
Collapse
|
14
|
Kim MJ, Lee SW, Dao PDQ, Cho CS. Synthesis of benzo[4,5]imidazo[1,2‐
a
]indolo[1,2‐
c
]quinazolines from 2‐(2‐bromoaryl)indoles and 2‐methoxybenzimidazoles under recyclable magnetic MOF‐199 catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Jeong Kim
- Department of Applied Chemistry Kyungpook National University Daegu Korea
| | - Seong Weon Lee
- Department of Applied Chemistry Kyungpook National University Daegu Korea
| | - Pham Duy Quang Dao
- Department of Applied Chemistry Kyungpook National University Daegu Korea
| | - Chan Sik Cho
- Department of Applied Chemistry Kyungpook National University Daegu Korea
| |
Collapse
|
15
|
Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Dehbanipour Z, Zarnegareyan A. Magnetic nanoparticles supported a palladium bis(benzothiazole) complex: A novel efficient and recyclable catalyst for the synthesis of benzimidazoles and benzothiazoles from benzyl alcohol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022; 13:868383. [PMID: 35572705 PMCID: PMC9106393 DOI: 10.3389/fmicb.2022.868383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Kinema is a popular sticky fermented soybean food of the Eastern Himalayan regions of North East India, east Nepal, and south Bhutan. We hypothesized that some dominant bacteria in kinema may contribute to the formation of targeted and non-targeted metabolites for health benefits; hence, we studied the microbiome-metabolite mining of kinema. A total of 1,394,094,912 bp with an average of 464,698,304 ± 120,720,392 bp was generated from kinema metagenome, which resulted in the identification of 47 phyla, 331 families, 709 genera, and 1,560 species. Bacteria (97.78%) were the most abundant domain with the remaining domains of viruses, eukaryote, and archaea. Firmicutes (93.36%) was the most abundant phylum with 280 species of Bacillus, among which Bacillus subtilis was the most dominant species in kinema followed by B. glycinifermentans, B. cereus, B. licheniformis, B. thermoamylovorans, B. coagulans, B. circulans, B. paralicheniformis, and Brevibacillus borstelensis. Predictive metabolic pathways revealed the abundance of genes associated with metabolism (60.66%), resulting in 216 sub-pathways. A total of 361 metabolites were identified by metabolomic analysis (liquid chromatography-mass spectrophotometry, LC-MS). The presence of metabolites, such as chrysin, swainsonine, and 3-hydroxy-L-kynurenine (anticancer activity) and benzimidazole (antimicrobial, anticancer, and anti-HIV activities), and compounds with immunomodulatory effects in kinema supports its therapeutic potential. The correlation between the abundant species of Bacillus and primary and secondary metabolites was constructed with a bivariate result. This study proves that Bacillus spp. contribute to the formation of many targeted and untargeted metabolites in kinema for health-promoting benefits.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
18
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c00580
expr 911091169 + 878873796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
19
|
Hu W, Pi C, Hu D, Han X, Wu Y, Cui X. Rh(III)-Catalyzed Synthesis of Indazolo[2,3- a]quinolines: Vinylene Carbonate as C1 and C2 Building Blocks. Org Lett 2022; 24:2613-2618. [PMID: 35377649 DOI: 10.1021/acs.orglett.2c00580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A rhodium-catalyzed cyclization of azobenzenes and vinylene carbonate via C-H bond activation to construct indazolo[2,3-a]quinolines has been developed. This protocol offers an efficient method for synthesis of the titled products in good yields with broad functional group tolerance. In this reaction, three C-C bonds and C-N bond are formed in one pot, and vinylene carbonate (VC) acts as C1 and C2 synthons as well as "vinylene transfer" agent and acylation reagent in the construction of target-fused heterocycles. Moreover, the products exhibit favorable fluorescence properties, which indicate their potential application as fluorescent materials and biosensors.
Collapse
Affiliation(s)
- Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
20
|
|
21
|
Sidat PS, Jaber TMK, Vekariya SR, Mogal AM, Patel AM, Noolvi M. Anticancer Biological Profile of Some Heterocylic Moieties-Thiadiazole, Benzimidazole, Quinazoline, and Pyrimidine. PHARMACOPHORE 2022. [DOI: 10.51847/rt6ve6gesu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|