1
|
Wang S, Li J, Zhang Z, Cao S, Zhang Z, Bian Y, Xu Y, Ma C. Advances in nanomedicine and delivery systems for gastric cancer research. Front Bioeng Biotechnol 2025; 13:1565999. [PMID: 40190709 PMCID: PMC11968739 DOI: 10.3389/fbioe.2025.1565999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The early diagnosis rate of gastric cancer is low, and most patients are already at an advanced stage by the time they are diagnosed, posing significant challenges for treatment and exhibiting high recurrence rates, which notably diminish patients' survival time and quality of life. Therefore, there is an urgent need to identify methods that can enhance treatment efficacy. Nanomedicine, distinguished by its small size, high targeting specificity, and strong biological compatibility, is particularly well-suited to address the toxic side effects associated with current diagnostic and therapeutic approaches for gastric cancer. Consequently, the application of nanomedicine and delivery systems in the diagnosis and treatment of gastric cancer has garnered increasing interest from researchers. This review provides an overview of recent advancements in the use of nanomaterials as drugs or drug delivery systems in gastric cancer research, encompassing their applications in diagnosis, chemotherapy, radiotherapy, surgery, and phototherapy, and explores the promising prospects of nanomedicine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sizhe Wang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Jilei Li
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Shasha Cao
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zihan Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yifan Bian
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yanchao Xu
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| |
Collapse
|
2
|
Ibne Shoukani H, Nisa S, Bibi Y, Ishfaq A, Ali A, Alharthi S, Kubra KT, Zia M. Green synthesis of polyethylene glycol coated, ciprofloxacin loaded CuO nanoparticles and its antibacterial activity against Staphylococcus aureus. Sci Rep 2024; 14:21246. [PMID: 39261712 PMCID: PMC11390890 DOI: 10.1038/s41598-024-72322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Antibacterial resistance requires an advanced strategy to increase the efficacy of current therapeutics in addition to the synthesis of new generations of antibiotics. In this study, copper oxide nanoparticles (CuO-NPs) were green synthesized using Moringa oleifera root extract. CuO-NPs fabricated into a form of aspartic acid-ciprofloxacin-polyethylene glycol coated copper oxide-nanotherapeutics (CIP-PEG-CuO) to improve the antibacterial activity of NPs and the efficacy of the drug with controlled cytotoxicity. These NPs were charachterized by Fourier transform infrared spectroscopy (FTIR), x-rays diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Antibacterial screening and bacterial chemotaxis investigations demonstrated that CIP-PEG-CuO NPs show enhanced antibacterial potential against Gram-positive and Gram-negative clinically isolated pathogenic bacterial strains as compared to CuO-NPs. In ex-vivo cytotoxicity CIP-PEG-CuO-nano-formulates revealed 88% viability of Baby Hamster Kidney 21 cell lines and 90% RBCs remained intact with nano-formulations during hemolysis assay. An in-vivo studies on animal models show that Staphylococcus aureus were eradicated by this newly developed formulate from the infected skin and showed wound-healing properties. By using specially designed nanoparticles that are engineered to precisely transport antimicrobial agents, these efficient nano-drug delivery systems can target localized infections, ensure targeted delivery, enhance efficacy through increased drug penetration through physical barriers, and reduce systemic side effects for more effective treatment.
Collapse
Affiliation(s)
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan.
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, 4600, Pakistan
| | - Afsheen Ishfaq
- Department of Medicine, FRPMC/PAF Hospital Faisal, Karachi, 75350, Pakistan
| | - Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur, 22780, Pakistan.
- School of Chemistry & Chemical Engineering , Henan University of Technology, Zhengzhou, 450001, China.
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Research Center of Basic Sciences, Engineering and High Altitude, Taif University, 21944, Taif, Saudi Arabia
| | - Khudija Tul Kubra
- Department of Microbiology, The University of Haripur, Haripur, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
3
|
Azizollahi F, Kamali H, Oroojalian F. Magnetic nanocarriers for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:349-401. [DOI: 10.1016/b978-0-443-18770-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Hani U, Osmani RAM, Yasmin S, Gowda BHJ, Ather H, Ansari MY, Siddiqua A, Ghazwani M, Fatease AA, Alamri AH, Rahamathulla M, Begum MY, Wahab S. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022; 14:1576. [PMID: 36015202 PMCID: PMC9416534 DOI: 10.3390/pharmaceutics14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer has long been regarded as one of the world's most fatal diseases, claiming the lives of countless individuals each year. Stomach cancer is a prevalent cancer that has recently reached a high number of fatalities. It continues to be one of the most fatal cancer forms, requiring immediate attention due to its low overall survival rate. Early detection and appropriate therapy are, perhaps, of the most difficult challenges in the fight against stomach cancer. We focused on positive tactics for stomach cancer therapy in this paper, and we went over the most current advancements and progressions of nanotechnology-based systems in modern drug delivery and therapies in great detail. Recent therapeutic tactics used in nanotechnology-based delivery of drugs aim to improve cellular absorption, pharmacokinetics, and anticancer drug efficacy, allowing for more precise targeting of specific agents for effective stomach cancer treatment. The current review also provides information on ongoing research aimed at improving the curative effectiveness of existing anti-stomach cancer medicines. All these crucial matters discussed under one overarching title will be extremely useful to readers who are working on developing multi-functional nano-constructs for improved diagnosis and treatment of stomach cancer.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, Karnataka, India;
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (S.Y.); (H.A.)
| | - Mohammad Yousuf Ansari
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University ), Mullana, Ambala 133203, Haryana, India;
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (M.G.); (A.A.F.); (A.H.A.); (M.R.); (M.Y.B.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia;
| |
Collapse
|
5
|
Zhou L, Li Y, Gong X, Li Z, Wang H, Ma L, Tuerhong M, Abudukeremu M, Ohizumi Y, Xu J, Guo Y. Preparation, characterization, and antitumor activity of Chaenomeles speciosa polysaccharide-based selenium nanoparticles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|