1
|
De Block F, Van Dyck D, Deforche B, Crombez G, Poppe L. Which cognitive tests are used to examine the acute effect of physical activity on cognition in healthy adults aged 50 and older? - A systematic review. Psychol Health 2025:1-38. [PMID: 40338000 DOI: 10.1080/08870446.2025.2498577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 01/07/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVES The review aims to create an overview of current evidence on the acute effect of physical activity (PA) on cognition in adults aged 50 and older, focusing on which cognitive (sub)domains, cognitive tests, and outcomes are used, and whether effects were demonstrated. METHODS The MEDLINE, Embase, and Cochrane Central databases were searched for articles assessing the acute effect of PA on cognition in healthy adults aged 50 and older. RESULTS Forty-two articles were included, using a variety of protocols. Executive functioning was the most frequently assessed cognitive domain. Overall, thirty-five different cognitive tests were administered, among which many variations and modifications were found. Furthermore, the reported outcomes varied greatly, even when using the same test. Across tests, 45.3% of the reported outcomes demonstrated an improvement in cognition shortly after PA. Time-based outcomes demonstrated an improvement more often than accuracy-based outcomes. However, because of the large variety among protocols and often insufficiently nuanced reporting, results should be interpreted carefully. CONCLUSIONS The acute effect of PA on executive functioning in older adults has been examined frequently, but research in other cognitive domains is limited. The variety among study protocols and test outcomes highlights the need for more rigorous research and reporting.
Collapse
Affiliation(s)
- Fien De Block
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Delfien Van Dyck
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Benedicte Deforche
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Crombez
- Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Louise Poppe
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Atakan MM, Atakan B. Acute Pilates and plyometric exercise in school-based settings improve attention and mathematics performance in high school students. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:185-192. [PMID: 38708323 PMCID: PMC11067860 DOI: 10.1016/j.smhs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 05/07/2024] Open
Abstract
The aim of this study was to examine the effects of acute Pilates and plyometric exercise in a school-based setting on attention and mathematics test performance in high school students. Forty 10th-grade students (21 females and 19 males; age: [15.0 ± 0.5] years, body mass index: [21.4 ± 2.8] kg/m2) participated in this crossover and quasi-experimental study. In week 1, students were familiarized with the d2 test of attention and Pilates and plyometric exercises activities, and body composition measurements were taken. In both weeks 2 and 3, students completed the d2 test of attention and mathematics test with 20 questions following a single session of low-to-moderate-intensity exercise and a classroom-based non-exercise activity, in a non-randomized order. The exercise sessions included 30 mins of plyometric exercises for male students and Pilates exercise for female students, with intensities corresponding to 10-14 on the Borg rating of perceived exertion scale6-20. Compared to the non-exercise activity, a 30-min of Pilates and plyometric exercise resulted in significant improvements in attention score (mean difference [Δ] = 54.5 score; p < 0.001; Cohen's effect sizes [d] = 1.26) and concentration performance (Δ = 20.7 score; p = 0.003; d = 0.51). The students scored significantly higher on the mathematics test after participating in the exercise sessions compared to the non-exercise condition (Δ% = 11.7; p < 0.001; d = 0.76). There were no significant differences between genders (p > 0.05). These findings demonstrate the effectiveness of acute light-to-moderate-intensity Pilates and plyometric exercises in school-based settings for improving attention and mathematics performance in adolescents.
Collapse
Affiliation(s)
- Muhammed M. Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara 06800, Turkey
| | - Betül Atakan
- Aydınlıkevler Anatolian High School, Ministry of National Education, Ankara 06135, Turkey
| |
Collapse
|
3
|
Taylor EM, Cadwallader CJ, Curtin D, Chong TTJ, Hendrikse JJ, Coxon JP. High-intensity acute exercise impacts motor learning in healthy older adults. NPJ SCIENCE OF LEARNING 2024; 9:9. [PMID: 38368455 PMCID: PMC10874400 DOI: 10.1038/s41539-024-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Healthy aging is associated with changes in motor sequence learning, with some studies indicating decline in motor skill learning in older age. Acute cardiorespiratory exercise has emerged as a potential intervention to improve motor learning, however research in healthy older adults is limited. The current study investigated the impact of high-intensity interval exercise (HIIT) on a subsequent sequential motor learning task. Twenty-four older adults (aged 55-75 years) completed either 20-minutes of cycling, or an equivalent period of active rest before practicing a sequential force grip task. Skill learning was assessed during acquisition and at a 6-hour retention test. In contrast to expectation, exercise was associated with reduced accuracy during skill acquisition compared to rest, particularly for the oldest participants. However, improvements in motor skill were retained in the exercise condition, while a reduction in skill was observed following rest. Our findings indicate that high-intensity exercise conducted immediately prior to learning a novel motor skill may have a negative impact on motor performance during learning in older adults. We also demonstrated that exercise may facilitate early offline consolidation of a motor skill within this population, which has implications for motor rehabilitation.
Collapse
Affiliation(s)
- Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Claire J Cadwallader
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, 3065, Australia
| | - Joshua J Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
4
|
Callow DD, Kommula Y, Stark CEL, Smith JC. Acute cycling exercise and hippocampal subfield function and microstructure in healthy older adults. Hippocampus 2023; 33:1123-1138. [PMID: 37526119 PMCID: PMC10543457 DOI: 10.1002/hipo.23571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Aging is associated with deterioration in dentate gyrus (DG) and CA3, both crucial hippocampal subfields for age susceptible memory processes such as mnemonic discrimination (MD). Meanwhile, a single aerobic exercise session alters DG/CA3 function and neural activity in both rats and younger adults and can elicit short-term microstructural alterations in the hippocampus of older adults. However, our understanding of the effects of acute exercise on hippocampal subfield integrity via function and microstructure in older adults is limited. Thus, a within subject-design was employed to determine if 20-min of moderate to vigorous aerobic exercise alters bilateral hippocampal subfield function and microstructure using high-resolution functional magnetic resonance imaging (fMRI) during an MD task (n = 35) and high angular resolution multi-shell diffusion imaging (n = 31), in healthy older adults, compared to seated rest. Following the exercise condition, participants exhibited poorer MD performance, particularly when their perception of effort was higher. Exercise was also related to lower MD-related activity within the DG/CA3 but not CA1 subfield. Finally, after controlling for whole brain gray matter diffusion, exercise was associated with lower neurite density index (NDI) within the DG/CA3. However, exercise-related differences in DG/CA3 activity and NDI were not associated with differences in MD performance. Our results suggest moderate to vigorous aerobic exercise may temporarily inhibit MD performance, and suppress DG/CA3 MD-related activity and NDI, potentially through neuroinflammatory/glial processes. However, additional studies are needed to confirm whether these short-term changes in behavior and hippocampal subfield neurophysiology are beneficial and how they might relate to long-term exercise habits.
Collapse
Affiliation(s)
- Daniel D. Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Vints WAJ, Gökçe E, Langeard A, Pavlova I, Çevik ÖS, Ziaaldini MM, Todri J, Lena O, Sakkas GK, Jak S, Zorba (Zormpa) I, Karatzaferi C, Levin O, Masiulis N, Netz Y. Myokines as mediators of exercise-induced cognitive changes in older adults: protocol for a comprehensive living systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1213057. [PMID: 37520128 PMCID: PMC10374322 DOI: 10.3389/fnagi.2023.1213057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background The world's population is aging, but life expectancy has risen more than healthy life expectancy (HALE). With respect to brain and cognition, the prevalence of neurodegenerative disorders increases with age, affecting health and quality of life, and imposing significant healthcare costs. Although the effects of physical exercise on cognition in advanced age have been widely explored, in-depth fundamental knowledge of the underlying mechanisms of the exercise-induced cognitive improvements is lacking. Recent research suggests that myokines, factors released into the blood circulation by contracting skeletal muscle, may play a role in mediating the beneficial effect of exercise on cognition. Our goal in this ongoing (living) review is to continuously map the rapidly accumulating knowledge on pathways between acute or chronic exercise-induced myokines and cognitive domains enhanced by exercise. Method Randomized controlled studies will be systematically collected at baseline and every 6 months for at least 5 years. Literature search will be performed online in PubMed, EMBASE, PsycINFO, Web of Science, SportDiscus, LILACS, IBECS, CINAHL, SCOPUS, ICTRP, and ClinicalTrials.gov. Risk of bias will be assessed using the Revised Cochrane Risk of Bias tool (ROB 2). A random effects meta-analysis with mediation analysis using meta-analytic structural equation modeling (MASEM) will be performed. The primary research question is to what extent exercise-induced myokines serve as mediators of cognitive function. Secondarily, the pooled effect size of specific exercise characteristics (e.g., mode of exercise) or specific older adults' populations (e.g., cognitively impaired) on the relationship between exercise, myokines, and cognition will be assessed. The review protocol was registered in PROSPERO (CRD42023416996). Discussion Understanding the triad relationship between exercise, myokines and cognition will expand the knowledge on multiple integrated network systems communicating between skeletal muscles and other organs such as the brain, thus mediating the beneficial effects of exercise on health and performance. It may also have practical implications, e.g., if a certain myokine is found to be a mediator between exercise and cognition, the optimal exercise characteristics for inducing this myokine can be prescribed. The living review is expected to improve our state of knowledge and refine exercise regimes for enhancing cognitive functioning in diverse older adults' populations. Registration Systematic review and meta-analysis protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on the 24th of April 2023 (registration number CRD42023416996).
Collapse
Affiliation(s)
- Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- Department of Rehabilitation Medicine, Research School Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
- Adelante Zorggroep Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, Netherlands
| | - Evrim Gökçe
- Sports Rehabilitation Laboratory, Ankara City Hospital, Ankara, Türkiye
| | | | - Iuliia Pavlova
- Department of Theory and Methods of Physical Culture, Lviv State University of Physical Culture, Lviv, Ukraine
| | | | | | - Jasemin Todri
- Department of Physiotherapy, Universidad Catolica San Antonio (UCAM), Murcia, Spain
| | - Orges Lena
- Department of Physiotherapy, Universidad Catolica San Antonio (UCAM), Murcia, Spain
| | - Giorgos K. Sakkas
- Lifestyle Medicine and Experimental Physiology and Myology Lab, Department of Physical Education and Sports Science, The Center of Research and Evaluation of Human Performance (CREHP), University of Thessaly, National and Kapodistrian University of Athens (TEFAA) Campus, Karyes, Greece
| | - Suzanne Jak
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| | | | - Christina Karatzaferi
- Lifestyle Medicine and Experimental Physiology and Myology Lab, Department of Physical Education and Sports Science, The Center of Research and Evaluation of Human Performance (CREHP), University of Thessaly, National and Kapodistrian University of Athens (TEFAA) Campus, Karyes, Greece
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University of Leuven, Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Yael Netz
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
- The Levinsky-Wingate Academic Center, Wingate Campus, Netanya, Israel
| |
Collapse
|
6
|
Callow DD, Pena GS, Stark CEL, Smith JC. Effects of acute aerobic exercise on mnemonic discrimination performance in older adults. J Int Neuropsychol Soc 2023; 29:519-528. [PMID: 35968853 PMCID: PMC10538177 DOI: 10.1017/s1355617722000492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Ample evidence suggests exercise is beneficial for hippocampal function. Furthermore, a single session of aerobic exercise provides immediate benefits to mnemonic discrimination performance, a highly hippocampal-specific memory process, in healthy younger adults. However, it is unknown if a single session of aerobic exercise alters mnemonic discrimination in older adults, who generally exhibit greater hippocampal deterioration and deficits in mnemonic discrimination performance. METHODS We conducted a within subject acute exercise study in 30 cognitively healthy and physically active older adults who underwent baseline testing and then completed two experimental visits in which they performed a mnemonic discrimination task before and after either 30 min of cycling exercise or 30 min of seated rest. Linear mixed-effects analyses were conducted in which condition order and age were controlled, time (pre vs. post) and condition (exercise vs. rest) were modeled as fixed effects, and subject as a random effect. RESULTS No significant time by condition interaction effect was found for object recognition (p = .254, η2=.01), while a significant reduction in interference was found for mnemonic discrimination performance following the exercise condition (p = .012, η2=.07). A post-intervention only analysis indicated that there was no difference between condition for object recognition (p = .186, η2=.06), but that participants had better mnemonic discrimination performance (p < .001, η2=.22) following the exercise. CONCLUSIONS Our results suggest a single session of moderate-intensity aerobic exercise may reduce interference and elicit better mnemonic discrimination performance in healthy older adults, suggesting benefits for hippocampal-specific memory function.
Collapse
Affiliation(s)
- Daniel D. Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gabriel S. Pena
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|