1
|
Doss BL, Konkol JA, Liu Y, Brinzari TV, Pan L. Correlative Atomic Force Microscopy and Raman Spectroscopy in Acid Erosion of Dentin. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1755-1763. [PMID: 37639376 DOI: 10.1093/micmic/ozad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Physical properties and chemical composition are fundamentally defining and interconnected surface characteristics. However, few techniques are able to capture both in a correlative fashion at the same sample location and orientation. This is especially important for complex materials such as dentin, which is an inner tooth structure and is a heterogeneous, composite inorganic-organic material with open channels (tubules) that extend toward the tooth pulp. Here, a combined microscope system consisting of an atomic force microscope and a confocal Raman spectrometer was used to study the correlative physical and chemical properties of human dentin. The local hardness of dentin was highly correlated with the Raman signal ratio of inorganic to organic material, and this was enhanced in the peritubular regions of dentin. When the samples were etched with citric acid, Young's modulus, hardness, and inorganic-to-organic material ratio decreased significantly, collagen fibrils on the surface were exposed, the peritubular regions were removed, and the tubule diameters increased. Thus, the combined atomic force microscopy (AFM)-Raman approach allows for comprehensive and correlative physical-chemical analysis of material surfaces and will be invaluable for evaluating oral therapeutic strategies.
Collapse
Affiliation(s)
- Bryant L Doss
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Jakub A Konkol
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Yangxi Liu
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Tatiana V Brinzari
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| | - Long Pan
- Colgate-Palmolive Technology Center, 909 River Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Xu R, Zhou Z, Lin D, Yuan L, Wang S, Xu M, Chen Y, Hu X. Enhancing effects of immobilized chondroitin sulfate on odontogenic differentiation of dental pulp stem cells and reparative dentin formation. J Endod 2023:S0099-2399(23)00240-6. [PMID: 37150292 DOI: 10.1016/j.joen.2023.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVES Chondroitin sulfate (CS) is a major proteoglycan involved in the mineralization of the organic matrix of dentin. In this study, the roles of CS immobilized in crosslinked collagen I hydrogels (CS-Col I) on odontogenic differentiation of dental pulp stem cells (DPSCs) and reparative dentin formation were investigated. METHODS Different concentrations of CS were incorporated into the genipin- crosslinked Col I hydrogels (CS-0.05, CS-0.1, and CS-0.2 respectively). The influences of CS on proliferation and odontogenic differentiation of DPSCs were investigated. Finally, the effect of the functionalized hydrogel on the formation of reparative dentin was analyzed in a rat pulp capping model in vivo. RESULTS CS improved the proliferation of DPSCs seeded on the hydrogels (p<0.05). CS also enhanced the mineralization activities and increased the expression levels of the odontogenic related proteins of DPSCs on day 7 and day 14 (p<0.05). In vivo, CS-0.1 hydrogel induced reparative dentin formation with higher quality compared to mineral trioxide aggregate (MTA). CONCLUSION CS immobilized in Col I hydrogels could induce odontogenic differentiation of DPSCs in vitro and promote homogeneous mineralized barrier formation in vivo. CS-Col I hydrogel has the potential for reparative dentin formation of high quality in direct pulp capping.
Collapse
Affiliation(s)
- Ruoman Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Ziyu Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Danle Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Lingling Yuan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Siyu Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Meng Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology
| | - Yanan Chen
- Stomatological Hospital, Southern Medical University
| | - Xiaoli Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key, Laboratory of Stomatology.
| |
Collapse
|
3
|
Ida-Yonemochi H, Takeuchi K, Ohshima H. Role of chondroitin sulfate in the developmental and healing process of the dental pulp in mice. Cell Tissue Res 2022; 388:133-148. [DOI: 10.1007/s00441-022-03575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
4
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
5
|
Huang L, Zhang X, Shao J, Zhou Z, Chen Y, Hu X. Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM. J Adv Res 2019; 22:163-171. [PMID: 32055426 PMCID: PMC7005426 DOI: 10.1016/j.jare.2019.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/27/2019] [Indexed: 12/04/2022] Open
Abstract
AFM-IR technique was used to detect the chemical heterogeneity of human dentin for the first time. The heterogeneity of mechanical properties of human dentin was explored by AFM AM-FM technique. A band at 1336 cm−1 assigned to S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O stretching vibrations was found only in peritubular dentin. Peritubular dentin had a higher Young’s modulus (32.25 ± 4.67 GPa) than intertubular dentin. AFM-IR and AFM AM-FM are useful for understanding the mineral deposition mechanisms of dentin.
Human dentin, as an important calcified tissue in the body, plays significant roles in withstanding masticatory forces and has a complex hierarchical organization. Understanding the composition and ultrastructure of dentin is critical for elucidating mechanisms of biomineralization under healthy and pathological states. Here, atomic force microscope infrared spectroscopy (AFM-IR) and AFM-based amplitude modulation-frequency modulation (AM-FM) techniques were utilized to detect the heterogeneity in chemical composition and mechanical properties between peritubular and intertubular dentin at the nanoscale. AFM-IR spectra collected from peritubular and intertubular dentin contained similar vibrational bands in the amide regions (I, II and III), suggesting that collagen may exist in both structures. A distinctive band at 1336 cm−1 indicative of SO stretching vibrations was detected only in peritubular dentin. AFM-IR imaging showed an uneven distribution of chemical components at different locations, confirming the heterogeneity of dentin. The Young’s modulus of peritubular dentin was higher, and was associated to a higher mineral content. This study demonstrated distinctive chemical and mechanical properties of peritubular dentin, implying the different development and mineralization processes between peritubular and intertubular dentin. AFM-IR is useful to provide compositional information on the heterogeneity of human dentin, helping to understand the mineral deposition mechanisms of dentin.
Collapse
Affiliation(s)
- Lijia Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.,Micro and Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziyu Zhou
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China
| | - Yanan Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
6
|
Pal D, Saha S. Chondroitin: a natural biomarker with immense biomedical applications. RSC Adv 2019; 9:28061-28077. [PMID: 35530463 PMCID: PMC9071010 DOI: 10.1039/c9ra05546k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally extracted glycosaminoglycan chondroitin sulphate is the reactive product of N-acetylgalactosamine and d-glucuronic acid. Chondroitin sulfate (CS) extracted from Scophthalmus maximus, H. scabra, E. fraudatrix, M. magnum, and H. mexicana has shown remarkable anticoagulant, articular cartilage repair, corneal lesion healing, antidiabetic, and antiproliferative effects. Also, platinum and strontium nanoparticles of chondroitin sulfate are effective in osteoarthritis and exert anti-HSV2 and anti-angiogenic properties. A combination of chondroitin sulfate and RNA lipolexes demonstrates gene silencing effects in liver fibrosis. Chondroitin sulfate has also been used as a carrier for loxoprofen hydrogel preparation. Oligosaccharides of chondroitin sulfate showed effective inhibition of bovine testicular hyaluronidase enzyme as an antibacterial agent during pregnancy. Monoclonal antibody-recognized chondroitin sulfate A was effectively used to treat ameloblastoma. Selenium-chondroitin sulfate nanoparticles demonstrated positive effects in therapy of Kashin-Beck disease (KBD) and osteoarthritis.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur-495009 C.G. India +91-7389263761
| | - Supriyo Saha
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Dehradun-248161 Uttarakhand India
| |
Collapse
|
7
|
Li C, Jing Y, Wang K, Ren Y, Liu X, Wang X, Wang Z, Zhao H, Feng JQ. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci 2018; 14:693-704. [PMID: 29910680 PMCID: PMC6001682 DOI: 10.7150/ijbs.25712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022] Open
Abstract
The mineralization-front theory is historically rooted in mineralization research fields for many decades. This theory is widely used to describe mineralization events in both osteogenesis and dentinogenesis. However, this model does not provide enough evidence to explain how minerals are propagated from the pulp-end dentin to dentin-enamel junction (DEJ). To address this issue, we modified the current research approaches by a) extending the mineral deposition windows of time from minutes to hours, instead of limiting the mineralization assay on days and weeks only; b) switching a regular fluorescent microscope to a more powerful confocal microscope; in which both mineral deposition rates and detail mineral labeling along with dentin tubules can be documented; and c) using reporter mice, including the Gli1-CreERT2 activated tomato and the 2.3 Col1-GFP to mark odontoblast processes combined with mineral dye injections. Our key findings are: 1) Odontoblast-processes, full of numerous mini-branches, evenly spread to entire dentin matrices with a high density of processes and a large diameter of the main process at the predentin-dentin junction; and 2) The minerals deposit along with entire odontoblast-processes and form many individual mineral collars surrounding odontoblast processes. As a result, these merged collars give rise to a single labeled line at the dentin-predentin junction, in which the dental tubules are wider in diameter and denser in odontoblast processes compared to other dentin areas. We therefore propose that it is the odontoblast-process that directly contributes to mineralization, which is not simply limited in the mineralization front at the edge of dentin and predentin, but occurs along with the entire odontoblast process. These new findings will shed new light on our understanding of dentin structure and function, as well as the mechanisms of mineralization.
Collapse
Affiliation(s)
- C Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Oral Implant, School of Stomatology, Tongji University, Shanghai 200072, PR China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Y Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - K Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Y Ren
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - X Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - X Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Z Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Oral Implant, School of Stomatology, Tongji University, Shanghai 200072, PR China
| | - H Zhao
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - J Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
8
|
The peritubular reinforcement effect of porous dentine microstructure. PLoS One 2017; 12:e0183982. [PMID: 28859165 PMCID: PMC5578600 DOI: 10.1371/journal.pone.0183982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/15/2017] [Indexed: 12/02/2022] Open
Abstract
In the current study, we evaluate the equivalent stiffness of peritubular reinforcement effect (PRE) of porous dentine optimized by the thickness of peritubular dentine (PTD). Few studies to date have evaluated or quantitated the effect of PRE on composite dentine. The miscrostructure of porous dentine is captured by scanning electron microscope images, and then finite element modeling is used to quantitate the deformation and stiffness of the porous dentine structure. By optimizing the radius of PTD and dentine tubule (DT), the proposed FE model is able to demonstrate the effect of peritubular reinforcement on porous dentine stiffness. It is concluded that the dentinal equivalent stiffness is reduced and degraded with the increase of the radius of DT (i.e., porosity) in the certain ratio value of Ep/Ei and certain radius of PTD, where Ep is the PTD modulus and Ei is the intertubular dentine modulus. So in order to ensure the whole dentinal equivalent stiffness is not loss, the porosity should get some value while the Ep/Ei is certain. Thus, PTD prevents the stress concentration around DTs and reduces the risk of DTs failure. Mechanically, the overall role of PTD appears to enhance the stiffness of the dentine composite structure. These results provide some new and significant insights into the biological evolution of the optimal design for the porous dentine microstructure. These findings on the biological microstructure design of dentine materials are applicable to other engineering structural designs aimed at increasing the overall structural strength.
Collapse
|