1
|
Raoufi A, Soleimani Samarkhazan H, Nouri S, Khaksari MN, Abbasi Sourki P, Sargazi Aval O, Baradaran B, Aghaei M. Macrophages in graft-versus-host disease (GVHD): dual roles as therapeutic tools and targets. Clin Exp Med 2025; 25:73. [PMID: 40048037 PMCID: PMC11885342 DOI: 10.1007/s10238-025-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Graft-versus-host disease remains one of the most formidable barriers to the complete success of hematopoietic stem cell transplantation that has emerged as the curative approach for many hematopoietic malignancies because it affects quality of life and overall survival. Macrophages are among the important members of the immune system, which perform dual roles in GVHD as both therapeutic tools and targets. This review epitomizes the multifunctional role of macrophages in the pathophysiology of both acute and chronic GVHD. Macrophages play an important role in the early phase of GVHD because of their recruitment and infiltration into target organs. Furthermore, they polarize into two functionally different phenotypes, including M1 and M2. In the case of acute GVHD, most macrophages express the M1 phenotype characterized by the production of pro-inflammatory cytokines that contribute to tissue damage. In contrast, in chronic GVHD, macrophages tend toward the M2 phenotype associated with the repair of tissues and fibrosis. A critical balance among these phenotypes is central to the course and severity of GVHD. Further interactions of macrophages with other lymphocytes such as T cells, B cells, and fibroblast further determine the course of GVHD. Macrophage interaction associated with alloreactive T cells promotes inflammation. This is therefore important in inducing injuries of tissues during acute GVHD. Interaction of macrophages, B cell, fibroblast, and CD4+ T cells promotes fibrosis during chronic GVHD and, hence, the subsequent dysfunction of organs. These are some insights, while several challenges remain. First, the impact of the dominant cytokines in GVHD on the polarization of macrophages is incompletely characterized and sometimes controversial. Second, the development of targeted therapies able to modulate macrophage function without systemic side effects remains an area of ongoing investigation. Future directions involve the exploration of macrophage-targeted therapies, including small molecules, antibodies, and nanotechnology, which modulate macrophage behavior and improve patient outcomes. This underlines the fact that a profound understanding of the dual role of macrophages in GVHD is essential for developing new and more effective therapeutic strategies. Targeting macrophages might represent one avenue for decreasing the incidence and severity of GVHD and improving the success and safety of HSCT.
Collapse
Affiliation(s)
- Atieh Raoufi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Navid Khaksari
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Abbasi Sourki
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Omolbanin Sargazi Aval
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Torre E, Morra M, Cassinelli C, Iviglia G. Anti-Bacterial and Anti-Inflammatory Effects of a Ceramic Bone Filler Containing Polyphenols from Grape Pomace. CERAMICS 2024; 7:975-988. [DOI: 10.3390/ceramics7030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Bone loss is a major burden for society and impacts people’s health all over the world. In a changing world looking toward a more conscious use of raw materials, efforts are being made to increasingly consider new promising biomaterials that account for, on one side, the ability to provide specific functional biological activities and, on the other, the feature of being well tolerated. In this regard, the use of phenolic compounds in the field of bone-related bioengineering shows a rising interest in the development of medical solutions aimed at taking advantage of the multiple beneficial properties of these plant molecules. In this work, the anti-bacterial and anti-inflammatory power of a biphasic calcium phosphate synthetic bone filler coated with a mixture of phenolic compounds was investigated by evaluating the minimal inhibitory concentration (MIC) value against Streptococcus mutans and Porphyromonas gingivalis and the expression of genes involved in inflammation and autophagy by real-time reverse transcription polymerase chain reaction (RT-qPCR) on J774a.1 murine macrophage cells. Results show a MIC of 0.8 μg/mL, a neat anti-inflammatory effect, and induction of autophagy key genes compared to a ceramic bone filler. In conclusion, functionalization with a polyphenol-rich extract confers to a ceramic bone filler anti-bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Marco Morra
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Clara Cassinelli
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Giorgio Iviglia
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| |
Collapse
|
3
|
Lagzian A, Askari M, Haeri MS, Sheikhi N, Banihashemi S, Nabi-Afjadi M, Malekzadegan Y. Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: new insights. Med Oncol 2024; 41:108. [PMID: 38592406 DOI: 10.1007/s12032-024-02313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Collapse
Affiliation(s)
- Ahmadreza Lagzian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Marziye Askari
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nastaran Sheikhi
- Biotechnology Department, Biological Sciences Faculty, Alzahra University, Tehran, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trend University, Nottingham, UK
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Yalda Malekzadegan
- Department of Microbiology, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
4
|
İnan S, Barış E. The role of autophagy in odontogenesis, dental implant surgery, periapical and periodontal diseases. J Cell Mol Med 2024; 28:e18297. [PMID: 38613351 PMCID: PMC11015398 DOI: 10.1111/jcmm.18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.
Collapse
Affiliation(s)
- Sevinç İnan
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| |
Collapse
|
5
|
Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023; 9:e21615. [PMID: 38027572 PMCID: PMC10665754 DOI: 10.1016/j.heliyon.2023.e21615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization is a dynamic process determining the outcome of various physiological and pathological situations through inducing pro-inflammatory responses or resolving inflammation via exerting anti-inflammatory effects. The miRNAs are epigenetic regulators of different biologic pathways that target transcription factors and signaling molecules to promote macrophage phenotype transition and regulate immune responses. Modulating the macrophage activation, differentiation, and polarization by miRNAs is crucial for immune responses in response to microenvironmental signals and under various physiological and pathological conditions. In term of clinical significance, regulating macrophage polarization via miRNAs could be utilized for inflammation control. Also, understanding the role of miRNAs in macrophage polarization can provide insights into diagnostic strategies associated with dysregulated miRNAs and for developing macrophage-centered therapeutic methods. In this case, targeting miRNAs to further regulate of macrophage polarization may become an efficient strategy for treating immune-associated disorders. The current review investigated and categorized various miRNAs directly or indirectly involved in macrophage polarization by targeting different transcription factors and signaling pathways. In addition, prospects for regulating macrophage polarization via miRNA as a therapeutic choice that could be implicated in various pathological conditions, including cancer or inflammation-mediated injuries, were discussed.
Collapse
Affiliation(s)
- Shaho Khayati
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ghafouri-Fard S, Dashti S, Gholami L, Badrlou E, Sadeghpour S, Hussen BM, Hidayat HJ, Nazer N, Shadnoush M, Sayad A, Arefian N. Expression analysis of Wnt signaling pathway related lncRNAs in periodontitis: A pilot case-control study. HUMAN GENE 2022; 33:201069. [DOI: 10.1016/j.humgen.2022.201069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Ghafouri-Fard S, Gholami L, Nazer N, Hussen BM, Sayad A, Hajiesmaeili M. Downregulation of oxytocin-related genes in periodontitis. Front Mol Neurosci 2022; 15:950919. [PMID: 36090248 PMCID: PMC9448980 DOI: 10.3389/fnmol.2022.950919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a common oral disorder leading to tooth loss in both developed and developing regions of the world. This multifactorial condition is related to the abnormal activity of several molecular pathways, among them are oxytocin-related pathways. In this study, we enrolled 26 patients and 28 controls and assessed the expression of four oxytocin-related genes, namely, FOS, ITPR, RCAN1, and RGS2, in circulation and affected tissues of enrolled individuals using real-time PCR. Expression of FOS was downregulated in total periodontitis tissues compared with total control tissues [ratio of mean expression (RME) = 0.23, P-value = 0.03]. Expression of FOS was also lower in total blood samples of patients compared with total controls. Expression of ITPR was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.16, P-value = 0.01). Moreover, the expression of ITPR was reduced in total blood samples of patients compared with controls (RME = 0.25, P-value = 0.03). Expression of RCAN1 was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.17, P-value = 0.01). However, the expression of RCAN1 was not different in blood samples of affected vs. unaffected individuals. Finally, the expression of RGS2 was lower in total periodontitis tissues compared with total control tissues (RME = 0.24, P-value = 0.01) and in total blood samples of affected individuals compared with controls (RME = 0.42, P-value = 0.05). This study provides data about the association between expressions of oxytocin-related genes and the presence of periodontitis. Future studies are needed to unravel the mechanistic links and find the correlation between expressions of these genes and the pathological stage of periodontitis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Arezou Sayad
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Arezou Sayad,
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
8
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Shoorei H, Taheri M, Samadian M. The impact of non-coding RNAs on macrophage polarization. Biomed Pharmacother 2021; 142:112112. [PMID: 34449319 DOI: 10.1016/j.biopha.2021.112112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process through which macrophages attain unique functional features as a response to certain stimuli from their niche. Lipopolysaccharide and Th1 cytokines induce generation of M1 macrophages. On the other hand, IL-4, IL-13, IL-10, IL-33, and TGF-β induce polarization of macrophages towards M2 phenotype. This process is also modulated by a number of miRNAs and lncRNAs. miR-375, miR-let7, miR-34a, miR-155, miR-124, miR-34a, miR-511-3p, miR-99a, miR-132 and miR-145-3p are among miRNAs that regulate macrophage polarization. Meanwhile, macrophage polarization is influenced by some lncRNAs such as H19, NRON, MEG3, GAS5, RN7SK, and AK085865. Macrophage polarization has functional significance in a wide range of human disorders particularly immune disorders and cancer. In addition, the effect of certain drugs in modulation of macrophage polarization is exerted through modulation of expression of non-coding RNAs. In the current manuscript, we provide a summary of studies aimed to identification of this aspect of non-coding RNAs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia. Biochem Biophys Res Commun 2021; 554:123-130. [PMID: 33784507 DOI: 10.1016/j.bbrc.2021.03.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been implicated in the ferroptosis in cancer cells and hematopoiesis in the bone marrow. However, the role of iron metabolism, especially NCOA4-mediated degradation of ferritin, has not been explored in the proliferation of mesenchymal stem cells. The present study was designed to explore the role of NCOA4-mediated ferritinophagy in hypoxia-treated dental pulp stem cells (DPSCs). Hypoxia treatment increased ROS generation, boosted cytosolic labile iron pool, increased expression of transferrin receptor 1 and NCOA4. Moreover, colocalization of LC3B with NCOA4 and ferritin was observed in hypoxia-treated DPSCs, indicating the development of ferritinophagy. Hypoxia promoted the proliferation of DPSCs, but not ferroptosis, under normal serum supplement and serum deprivation. NCOA4 knock-down reduced ferritin degradation and inhibited proliferation of DPSCs under hypoxia. Furthermore, the activation of hypoxia inducible factor 1α and p38 mitogen-activated protein kinase signaling pathway was involved in the upregulation of NCOA4 in hypoxia. Therefore, our present study suggested that NCOA4-mediated ferritinophagy promoted the level of labile iron pool, leading to enhanced iron availability and elevated cell proliferation of DPSCs. Our present study uncovered a physiological role of ferritinophagy in the proliferation and growth of mesenchymal stem cells under hypoxia.
Collapse
|
10
|
Guo W, Zhao Y, Li H, Lei L. NCOA4-mediated ferritinophagy promoted inflammatory responses in periodontitis. J Periodontal Res 2021; 56:523-534. [PMID: 33533512 DOI: 10.1111/jre.12852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVES Iron homeostasis plays a crucial role in the combat against pathogen invasion. Ferrous iron can trigger generous production of reactive oxygen species (ROS) by Fenton reaction. Nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor to deliver ferritin to lysosome, may trigger release of ferritin-bound iron into the cytosol. The aim of the present study was to explore whether NCOA4-mediated ferritinophagy participated in the pathogenesis of periodontitis, and its role in promoting the periodontal inflammation. METHODS Inflamed and healthy periodontal tissues were harvested for immunobiological staining of ferritinophagy-related genes in the periodontal tissues, while real-time quantitative PCR (qPCR) was utilized to detect mRNA transcription. Periodontal ligament fibroblasts (PDLFs) were isolated and infected with Porphyromonas gingivalis. The mRNA transcription and protein expression of genes involved in the iron metabolism, including NCOA4, transferrin receptor 1 (TFR1), and ferroportin (SLC40A1) were detected by qPCR and western blot. Levels of labile iron pool and ROS production were detected by flow cytometry and confocal endoscopy. Small interference RNA was utilized to knock down NCOA4. RESULTS Elevated expression of NCOA4, ferritin heavy chain, and light chain were observed in the diseased periodontal tissues. P. gingivalis infection promoted expression of TFR1, NCOA4, and microtubule-associated protein 1-light chain 3 B (LC3B), enhanced levels of intracellular labile iron pool and ROS production. NCOA4 knockdown reduced ROS generation in PDLFs in response to P. gingivalis and mitigated production of pro-inflammatory monocyte chemoattractant protein-1 and interleukin 6. P. gingivalis triggered activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling pathway. In addition, inhibitors of JNK, SP600125, and inhibitors of p38, SB203580 blocked NCOA4 transcription. CONCLUSION NCOA4-ferritinophagy participated in the progress of periodontitis progression. P. gingvalis-triggered ferritinophagy aggravated production of ROS and inflammatory responses in PDLFS. These findings suggest iron homeostasis plays an important role in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Wei Guo
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunhe Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Chen L, Hua Y. Autophagy of periodontal ligament inhibits inflammation and reduces the decline of bone density during orthodontic tooth movement of mice. Arch Oral Biol 2020; 121:104960. [PMID: 33171395 DOI: 10.1016/j.archoralbio.2020.104960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Autophagy can respond to compressive force and involves in bone remodeling and inflammation adjustment. The aim of this study was to investigate the role of the autophagy of periodontal ligament in the regulation of orthodontic tooth movement (OTM) and inflammation that is caused by orthodontic force. METHODS C57BL/6 mice were selected and divided into control group (Control), OTM group (OTM), OTM + autophagy inhibitor 3-Methyladenine group (OTM+3-MA), and OTM + autophagy promoter rapamycin group (OTM + RAPA). 3-MA or rapamycin was injected intraperitoneally daily. After 7 days of OTM, the mice were sacrificed and the maxillae were taken. Micro-CT was used to detect OTM distance and bone density. HE staining was applied to observe the structure of the periodontal ligament. qPCR and Immunohistochemistry were utilized to detect the inflammation of peridentium. RESULTS The inhibition of autophagy accelerated OTM, downregulated bone density, and made the structure of the periodontal ligament more disordered, while the improvement of autophagy had reverse results in OTM. Inflammation-related genes, such as Il-1, Il-6, and Tnf-α increased after OTM and displayed the highest expression in the OTM+3-MA group. Immunohistochemistry illustrated that the expression of IL-6 was higher in the OTM group and the OTM+3-MA group. CONCLUSIONS The increase of autophagy can reduce the decline of bone density, inhibit the expression of inflammatory factors, and arrange the periodontal ligament during OTM, thus providing a new way for the effective regulation of inflammation in clinical orthodontic treatment, so as to achieve more efficient and healthier tooth movement.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
12
|
Guo R, Huang Y, Liu H, Zheng Y, Jia L, Li W. Long Non-Coding RNA H19 Participates in Periodontal Inflammation via Activation of Autophagy. J Inflamm Res 2020; 13:635-646. [PMID: 33061528 PMCID: PMC7536258 DOI: 10.2147/jir.s276619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Periodontitis is the leading cause of tooth loss. The role of long non-coding RNA (lncRNA) in periodontal inflammation remains unclear. The aim of this study was to investigate the role of lncRNA H19 in periodontitis and its possible regulation of autophagy in periodontitis. Material and Methods Inflammation level was determined by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) in periodontal ligament cells (PDLCs). Western blotting, flow cytometric analysis, and immunofluorescence staining were used to detect the autophagy flux. Overexpression or knockdown of H19 was used to confirm its function. Ligature-induced periodontitis model in mice and periodontitis-affected human gingival tissue were used in vivo. RNA sequencing was performed to determine the differentially expressed genes. Results Autophagy was significantly increased in PDLCs after inflammatory stimulation as well as in a ligature-induced periodontitis model in mice and periodontitis-affected human gingival tissue. During the inflammatory process, H19 expression was also significantly upregulated. Further, the levels of autophagic markers were significantly upregulated after overexpressing H19 in PDLCs, and the increased autophagic activity induced by inflammatory stimulation was reversed by H19 knockdown. RNA sequencing showed that the expression profiles of mRNAs were significantly altered after H19 overexpression, and the differentially expressed genes were enriched in the PI3K/AKT signaling pathway, which was confirmed by the decreased p-AKT protein expression in the H19 overexpression group. Conclusion Periodontal inflammation activates autophagy flux, and H19 mediates the activation of autophagy via AKT pathway in periodontitis. This study expands our understanding of molecular regulation in periodontitis.
Collapse
Affiliation(s)
- Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
13
|
Vicencio E, Cordero EM, Cortés BI, Palominos S, Parra P, Mella T, Henrríquez C, Salazar N, Monasterio G, Cafferata EA, Murgas P, Vernal R, Cortez C. Aggregatibacter Actinomycetemcomitans Induces Autophagy in Human Junctional Epithelium Keratinocytes. Cells 2020; 9:E1221. [PMID: 32423042 PMCID: PMC7290389 DOI: 10.3390/cells9051221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
The adverse environmental conditions found in the periodontium during periodontitis pathogenesis stimulate local autophagy responses, mainly due to a continuous inflammatory response against the dysbiotic subgingival microbiome. The junctional epithelium represents the main site of the initial interaction between the host and the dysbiotic biofilm. Here, we investigated the role of autophagy in junctional epithelium keratinocytes (JEKs) in response to Aggregatibacter actinomycetemcomitans or its purified lipopolysaccharides (LPS). Immunofluorescence confocal analysis revealed an extensive nuclear translocation of transcription factor EB (TFEB) and consequently, an increase in autophagy markers and LC3-turnover assessed by immunoblotting and qRT-PCR. Correspondingly, challenged JEKs showed a punctuate cytosolic profile of LC3 protein contrasting with the diffuse distribution observed in untreated controls. Three-dimensional reconstructions of confocal images displayed a close association between intracellular bacteria and LC3-positive vesicles. Similarly, a close association between autophagic vesicles and the protein p62 was observed in challenged JEKs, indicating that p62 is the main adapter protein recruited during A. actinomycetemcomitans infection. Finally, the pharmacological inhibition of autophagy significantly increased the number of bacteria-infected cells as well as their death, similar to treatment with LPS. Our results indicate that A. actinomycetemcomitans infection induces autophagy in JEKs, and this homeostatic process has a cytoprotective effect on the host cells during the early stages of infection.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Esteban M. Cordero
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Parasitology Section, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa 7780050, Chile
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Sebastián Palominos
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Pedro Parra
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Tania Mella
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Constanza Henrríquez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Nelda Salazar
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Emilio A. Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Av. Paseo de la República 5544, Lima 15074, Peru
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| |
Collapse
|
14
|
Invasion of Human Retinal Pigment Epithelial Cells by Porphyromonas gingivalis leading to Vacuolar/Cytosolic localization and Autophagy dysfunction In-Vitro. Sci Rep 2020; 10:7468. [PMID: 32366945 PMCID: PMC7198524 DOI: 10.1038/s41598-020-64449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies link Periodontal disease(PD) to age-related macular degeneration (AMD). We documented earlier that Porphyromonas gingivalis(Pg), keystone oral-pathobiont, causative of PD, efficiently invades human gingival epithelial and blood-dendritic cells. Here, we investigated the ability of dysbiotic Pg-strains to invade human-retinal pigment epithelial cells(ARPE-19), their survival, intracellular localization, and the pathological effects, as dysfunction of RPEs leads to AMD. We show that live, but not heat-killed Pg-strains adhere to and invade ARPEs. This involves early adhesion to ARPE cell membrane, internalization and localization of Pg within single-membrane vacuoles or cytosol, with some nuclear localization apparent. No degradation of Pg or localization inside double-membrane autophagosomes was evident, with dividing Pg suggesting a metabolically active state during invasion. We found significant downregulation of autophagy-related genes particularly, autophagosome complex. Antibiotic protection-based recovery assay further confirmed distinct processes of adhesion, invasion and amplification of Pg within ARPE cells. This is the first study to demonstrate invasion of human-RPEs, begin to characterize intracellular localization and survival of Pg within these cells. Collectively, invasion of RPE by Pg and its prolonged survival by autophagy evasion within these cells suggest a strong rationale for studying the link between oral infection and AMD pathogenesis in individuals with periodontitis.
Collapse
|