1
|
Qi L, Duan R, Zhou J, Guo Y, Zhang C. Novel osteogenic peptide from bovine bone collagen hydrolysate: Targeted screening, molecular mechanism, and stability analysis. Food Chem 2024; 459:140359. [PMID: 38996641 DOI: 10.1016/j.foodchem.2024.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to screen for a novel osteogenic peptide based on the calcium-sensing receptor (CaSR) and explore its molecular mechanism and gastrointestinal stability. In this study, a novel osteogenic peptide (Phe-Ser-Gly-Leu, FSGL) derived from bovine bone collagen hydrolysate was successfully screened by molecular docking and synthesised by solid phase peptide synthesis for further analysis. Cell experiments showed that FSGL significantly enhanced the osteogenic activity of MC3T3-E1 cells by acting on CaSR, including proliferation (152.53%), differentiation, and mineralization. Molecular docking and molecular dynamics further demonstrated that FSGL was a potential allosteric activator of CaSR, that turned on the activation switch of CaSR by closing the Venus flytrap (VFT) domain and driving the two protein chains in the VFT domain to easily form dimers. In addition, 96.03% of the novel osteogenic peptide FSGL was stable during gastrointestinal digestion. Therefore, FSGL showed substantial potential for enhancing the osteogenic activity of osteoblasts. This study provided new insights for the application of CaSR in the targeted screening of osteogenic peptides to improve bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruipei Duan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang P, Liu J, Chai Z, Fu J, Li S, Yang Z. CircZfp644-205 inhibits osteoblast differentiation and induces apoptosis of pre-osteoblasts via sponging miR-455-3p and promoting SMAD2 expression. Eur J Med Res 2024; 29:315. [PMID: 38849933 PMCID: PMC11161986 DOI: 10.1186/s40001-024-01903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the progression of osteoporosis; however, their impact on osteogenic differentiation has yet to be fully elucidated. In this study, we identified a novel circRNA known as circZfp644-205 and investigated its effect on osteogenic differentiation and apoptosis in osteoporosis. METHODS CircZfp644-205, miR-445-3p, and SMAD2 levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 cells were subjected to microgravity (MG) to establish a cell model. Osteogenic differentiation was assessed using qRT-PCR, Alizarin Red S staining, alkaline phosphatase staining, and western blot. The apoptosis was evaluated using flow cytometry. The relationship between miR-445-3p and circZfp644-205 or SMAD2 was determined using bioinformatics, RNA pull-down, and luciferase reporter assay. Moreover, a hindlimb unloading mouse model was generated to investigate the role of circZfp644-205 in vivo using Micro-CT. RESULTS CircZfp644-205 expression was up-regulated significantly in HG-treated MC3T3-E1 cells. Further in vitro studies confirmed that circZfp644-205 knockdown inhibited the osteogenic differentiation and induced apoptosis of pre-osteoblasts. CircZfp644-205 acted as a sponge for miR-455-3p, which reversed the effects of circZfp644-205 on pre-osteoblasts. Moreover, miR-455-3p directly targeted SMAD2, thus inhibiting the expression of SMAD2 to regulate cellular behaviors. Moreover, circZfp644-205 alleviated the progression of osteoporosis in mice. CONCLUSIONS This study provides a novel circRNA that may serve as a potential therapeutic target for osteoporosis and expands our understanding of the molecular mechanism underlying the progression of osteoporosis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopaedics, Shanxi Provincial People's Hospital, No.29, Shuangta Temple Street, Taiyuan, 030012, Shanxi, China
| | - Jie Liu
- Department of Internal Neurology, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia, China
| | - Zijia Chai
- Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jinjin Fu
- Heze Municipal Hospital, Heze, Shandong, China
| | - Shuwen Li
- Department of Minimal Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | - Zhe Yang
- Department of Orthopaedics, Shanxi Provincial People's Hospital, No.29, Shuangta Temple Street, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
3
|
Du Y, Zhong H, Yu C, Lv Y, Yao Y, Peng Z, Lu S. Mir-142-5p inhibits the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Lhx8. Heliyon 2023; 9:e19878. [PMID: 37809754 PMCID: PMC10559276 DOI: 10.1016/j.heliyon.2023.e19878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoporosis (OP), a common systemic bone metabolism disease with a high incidence rate, is a serious health risk factor. Osteogenic differentiation balance is regulated by bone marrow mesenchymal stem cells (BMSCs) and plays a key role in OP occurrence and progression. Although, LIM homeobox 8 (Lhx8) has been identified to affect BMSCs osteogenic differentiation, its roles in OP and the associated mechanism remains unclear. Here, we aimed to elucidate the role and mechanism of Lhx8 in the osteogenic differentiation of BMSCs. BMSCs isolated from wild type and OP Sprague-Dawley rats were cultured and confirmed via flow cytometry and microscopy. Based on dual-luciferase reporter assay, BMSCs were transfected with miR-142-5p mimics and miR-NC (negative control). Real-time quantitative reverse transcription polymerase chain reaction and Western blot analyses were performed to determine the role of Lhx8 in BMSCs osteogenic differentiation. Lhx8 expression was significantly reduced in OP, whereas that of miR-142-5p, a possible Lhx8 regulator, was significantly upregulated. Dual-luciferase reporter assay demonstrated that miR-142-5p exerted a direct targeted regulatory effect on Lhx8. Moreover, miR-142-5p mimics significantly inhibited BMSCs osteogenic differentiation as well as Lhx8 expression in vitro, indicating that miR-142-5p may be involved in BMSCs osteogenic differentiation via Lhx8 expression regulation and may serve as a potential diagnostic target for OP. Overall, these findings indicated that miR-142-5p inhibits BMSCs osteogenic differentiation by suppressing Lhx8. These may serve as a foundation for further studies on OP treatment based on miR-142-5p targeting.
Collapse
Affiliation(s)
- Yongjun Du
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hui Zhong
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
| | - Chen Yu
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
| | - Yan Lv
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yueyi Yao
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 Chunrongxi Road, Kunming, Yunnan 650500, China
| | - Zhi Peng
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
| | - Sheng Lu
- Orthopaedics Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Yunnan Provincial Center for Clinical Medicine in Spinal and Spinal Cord Disorders, Kunming, 650034, China
| |
Collapse
|
4
|
Xu C, Wang Z, Liu Y, Wei B, Liu X, Duan K, Zhou P, Xie Z, Wu M, Guan J. Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Cell Biol Toxicol 2023; 39:1257-1274. [PMID: 36112264 PMCID: PMC10425527 DOI: 10.1007/s10565-022-09744-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/β-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/β-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/β-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/β-catenin pathway by downregulating MMP14.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Zhaodong Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Yajun Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Bangguo Wei
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Xiangyu Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Keyou Duan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Pinghui Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
| | - Zhao Xie
- Third Military Medical University of Chinese PLA, Chongqing, 400038, People's Republic of China
| | - Min Wu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
| | - Jianzhong Guan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China.
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
MicroRNA-141 and miR-200a induce the chondrogenic cell fate in human periodontal ligament cells by targeting TWIST2 and KLF12. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Zhang J, Jia G, Xue P, Li Z. Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss through the HGF/ PTEN/ Wnt/β-catenin axis. Ther Adv Chronic Dis 2021; 12:2040622321995685. [PMID: 34457228 PMCID: PMC8392808 DOI: 10.1177/2040622321995685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Previous studies reported that melatonin exerts its effect on mesenchymal stem cell (MSC) survival and differentiation into osteogenic and adipogenic lineage. In the current study we aimed to explore the effect of melatonin on osteoporosis and relevant mechanisms. Methods: Real-time qualitative polymerase chain reaction (RT-qPCR) and Western blot analysis were conducted to determine expression of HGF, PTEN, and osteoblast differentiation-related genes in ovariectomy (OVX)-induced osteoporosis mice and the isolated bone marrow MSCs (BMSCs). Pre-conditioning with melatonin (1 μmol/l, 10 μmol/l and 100 μmol/l) was carried out in OVX mice BMSCs. Bone microstructure was analyzed using micro-computed tomography and the contents of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase 5b (TRAP5b) were detected by enzyme-linked immunosorbent assay in serum. BMSC proliferation was measured by cell-counting kit (CCK)-8 assay. Alizarin red S (ARS) staining and ALP activity assay were performed to assess BMSC mineralization and calcification. The activity of the Wnt/β-catenin pathway was evaluated by dual-luciferase reporter assay. Results: Melatonin prevented bone loss in OVX mice. Melatonin increased ALP expression and reduced TRAP5b expression. HGF and β-catenin were downregulated, while PTEN was upregulated in the femur of OVX mice. Melatonin elevated HGF expression and then stimulated BMSC proliferation and osteogenic differentiation. Additionally, HGF diminished the expression of PTEN, resulting in activated Wnt/β-catenin pathway both in vitro and in vivo. Furthermore, melatonin was shown to ameliorate osteoporosis in OVX mice via the HGF/PTEN/Wnt/β-catenin axis. Conclusion: Melatonin could potentially enhance osteogenic differentiation of BMSCs and retard bone loss through the HGF/PTEN/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Guoliang Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Pan Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin Province 130041, P.R. China
| |
Collapse
|
7
|
Wu W, Li Q, Liu YF, Li Y. lncRNA GAS5 regulates angiogenesis by targeting miR‑10a‑3p/VEGFA in osteoporosis. Mol Med Rep 2021; 24:711. [PMID: 34396445 DOI: 10.3892/mmr.2021.12350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/28/2021] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a severe bone disease commonly occurring in older males and postmenopausal females. Previous studies have shown that long non‑coding (lnc)RNA growth arrest‑specific 5 (GAS5) serves an important role in osteoporosis. However, its role is unclear and requires further exploration. The relative expression levels of GAS5 and miR‑10a‑3p in the serum samples of patients with osteoporosis, as well as the relative expression levels of GAS5, microRNA (miR)‑10a‑3p and vascular endothelial growth factor A (VEGFA) mRNA in osteoblasts, were detected by reverse transcription‑quantitative PCR. ELISA and western blotting were used to detect the expression levels of VEGFA. A Matrigel angiogenesis test was used to assess the effects on angiogenesis. RNA binding interactions between GAS5/miR‑10a‑3p and miR‑10a‑3p/VEGFA were evaluated using dual‑luciferase reporter assays. Furthermore, the effects of the GAS5/miR‑10a‑3p/VEGFA axis were investigated via ELISA, western blotting and Matrigel angiogenesis. GAS5 was significantly downregulated and miR‑10a‑3p was upregulated in patients with osteoporosis. Overexpression of GAS5 promoted angiogenesis. GAS5 acted as a sponge of miR‑10a‑3p; VEGFA was a target gene of miR‑10a‑3p. GAS5 induced angiogenesis by inhibiting miR‑10a‑3p and enhancing VEGFA expression. These results indicated that GAS5 overexpression increased angiogenesis by inhibiting miR‑10a‑3p, promoting the expression of VEGFA. The present study revealed a novel mechanism and provided novel targets for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Wen Wu
- Department of Spine Surgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Qiang Li
- Department of Spine Surgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yi-Feng Liu
- Department of Spine Surgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Li
- Department of Spine Surgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
8
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Liu H, Yue X, Zhang G. Downregulation of miR‑146a inhibits osteoporosis in the jaws of ovariectomized rats by regulating the Wnt/β‑catenin signaling pathway. Int J Mol Med 2020; 47:6. [PMID: 33655338 PMCID: PMC7834969 DOI: 10.3892/ijmm.2020.4839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in osteoporosis and exhibit high potential in the therapeutic treatment of this condition. The present study aimed to explore the effects of miR-146a on bone loss noted in the jawbones of ovariectomized (OVX) rats and the interaction of miR-146a with the Wnt/β-catenin signaling pathway. OVX Sprague-Dawley female rats were used to establish the animal model of osteoporosis (OP). Bone mineral density (BMD) was measured via dual-energy X-ray and the miR-146a levels were detected by reverse transcription-quantitative PCR. miR-146a antagonist (miR-146a-A) and negative control (miR-146a-NC) were used to examine the effects of miR-146a on OVX rats. The contents of osteocalcin and tartrate resistant phosphatase (TRAP) were detected via ELISA. Hematoxylin and eosin, and TRAP staining were used to observe the pathological changes and the number of osteoclasts in the jawbone, respectively. In addition, the expression levels of the nuclear factor of activated T cells c1 (NFATc1), c-Fos and cathepsin K (CTK) in the jawbone were detected by immunohistochemistry, whereas the expression levels of osteoprotegerin, TRAP, dickkopf1, Wnt2 and β-catenin in the same tissues were assessed by western blot analysis. The Wnt2 activator (DKK2-C2) and inhibitor (endostatin) were used to examine the effects of miR-146a on the Wnt/β-catenin pathway. The results indicated that the BMD was increased, whereas the contents of osteocalcin and TRAP were decreased in the miR-146a-A group compared with those noted in the OP or negative control groups (P<0.05). Although the trabecular bone area of the OP group was decreased, the conditions were improved in the miR-146a-A group. The number of osteoclasts was decreased in the miR-146a-A group compared with that noted in the OP group (P<0.05). The expression levels of NFATc1, c-Fos and CTK in the miR-146a-A group were decreased compared with those noted in the OP or negative control groups (P<0.05). Similar results were found following the comparison of the miR-146a-A group with the DKK2-C2 group. Taken together, these data demonstrated that miR-146a downregulation inhibited OP of the jawbone in OVX rats by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hua Liu
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, P.R. China
| | - Xianhu Yue
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, P.R. China
| | - Gang Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, P.R. China
| |
Collapse
|